A fuzzy extended DELPHI method for adjustment of statistical time series prediction: An empirical study on dry bulk freight market case
Abstract
This paper investigates the forecasting accuracy of fuzzy extended group decisions in the adjustment of statistical benchmark results. DELPHI is a frequently used method for implementing accurate group consensus decisions. The concept of consensus is subject to expert characteristics and it is sometimes ensured by a facilitator’s judgment. Fuzzy set theory deals with uncertain environments and has been adapted for DELPHI, called fuzzy-DELPHI (FD). The present paper extends the recent literature via an implementation of FD for the adjustment of statistical predictions. We propose a fuzzy-DELPHI adjustment process for improvement of accuracy and introduced an empirical study to illustrate its performance in the validation of adjustments of statistical forecasts in the dry bulk shipping index.