World Maritime University

The Maritime Commons: Digital Repository of the World Maritime University

World Maritime University Dissertations

Dissertations

8-4-2007

Choice and optimization of forecasting models for container port throughput

Qingcheng Xue

Follow this and additional works at: https://commons.wmu.se/all_dissertations

Part of the Categorical Data Analysis Commons, Operational Research Commons, and the Statistical Models Commons

This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact library@wmu.se.

WORLD MARITIME UNIVERSITY

Shanghai, China

CHOICE AND OPTIMIZATION OF FORECASTING MODELS FOR CONTAINER PORT THROUGHPUT

By

QINGCHENG XUE

China

A research paper submitted to the World Maritime University in partial fulfillment of the requirements for the award of the degree of

MASTER OF SCIENCE

(TRANSPORT AND LOGISTICS)

2007

Copyright Qingcheng Xue, 2007

DECLARATION

I certify that all the material in this research paper that is not my own work has been identified, and that no material is included for which a degree has previously been confirmed on me,

The contents of this research paper reflect my own personal views, and are not necessarily endorsed by the University.

(QINGCHENG XUE)

Supervised by

Associate Professor Weihong Gu Shanghai Maritime University

ACKNOWLEDGEMENT

First, I am very thankful to WMU and SMU who have given me the opportunity to study in this program with the brand new way of studies.

I would like to owe my appreciation to my supervisor, Associate Professor Weihong Gu. Without her insightful suggestions and continuous assistance, this dissertation would not have been completed.

I deeply thank Professor Xin Shi and Yiding Zhong, for offering me some valuable advice in establishing the framework of my dissertation and some thought-provoking comments that improve the quality of this dissertation.

I also deeply thank Professor Suo Ma, for open the door of forecasting and prediction for me that are the valuable bases and the perfect beginning of my dissertation.

At last, thank opportunity of the life from God and treasure it in my heart.

ABSTRACT

Title of Dissertation: Choice and Optimization of Forecasting Methods for Container Port Throughput Container of Science in Transport and Logistics

The main achievement of this dissertation is the establishment of the SOP for the choice of forecasting method in the combined forecasting circumstance and the guideline and direction in the optimizing forecasting procedures as the theory and principal assumption.

The categories of the container port need to be clear. The criteria are from the growth rate of container throughput per year to standard deviation of growth rate of container throughput. The thesis only chooses the limited series in all of classifications, which just guides the research direction of the theory assumption.

The port container throughput forecasting methods are chosen. In fact, the time series forecasting, regression forecasting and grey system are universally confirmed. In detail, the third exponential smoothing, simple line regression and GM(1, 1) are chosen, which are classic and popular in the usage of container throughput forecasting and respective forecasting method series.

The conclusions of forecasting models choices for named ports and the optimizations for the chosen forecasting models in the circumstance and the classification could prove the assumption theory and principal.

KEYWORDS: throughput forecasting, SOP, forecasting method evaluation, categories of port

TABLE OF CONTENTS

1. Introduction	1
1.1 Background of Market Prediction	1
1.2 The Function of the Prediction of the Container Port Throughput	2
1.3 Literature Review	
1.4 Research Objectives	4
1.5 analysis tool & Structure of the Dissertation	6
2. Classification of Ports	9
2.1 The Operation Procedure of the Classification	9
2.2 The criteria of Growth Rate of Container Throughput per Year	10
2.3 The Criteria of Standard Deviation of Growth Rate of Container Th	roughput
per Year	12
per reu	
3. The Introduction of Chosen Forecasting Method	
-	14
3. The Introduction of Chosen Forecasting Method	 14 14
3. The Introduction of Chosen Forecasting Method	 14 14 15
 3. The Introduction of Chosen Forecasting Method 3.1 Time Series Forecasting	 14 14 15 16
 3. The Introduction of Chosen Forecasting Method 3.1 Time Series Forecasting	14 14 15 16 17
 3. The Introduction of Chosen Forecasting Method 3.1 Time Series Forecasting 3.2 Regression Forecasting 3.3 Grey System Forecasting 4. The Application of Models 	14 14 15 16 17
 3. The Introduction of Chosen Forecasting Method	14 14 15 16 16 17 18
 3. The Introduction of Chosen Forecasting Method	

5.1 Groups of Forecasting Result MAPE	
5.2 Circumstance One: Forecasting Result MAPE in the Adequate	Data 31
5.3 Circumstance Two: Forecasting Result MAPE in the Limited D	ata 32
5.4 Changing Percentage of Forecasting Result MAPE Between	the Adequate
Data and Limited Data	
6. Conclusions	
6.1 forecasting model choice	
6.1.1 Forecasting models choice in the first classification	
6.1.2 forecasting models choice in the second classification	
6.2 forecasting model optimization	
6.2.1 Optimization of the he third exponential smoothing mode	el 39
6.2.2 Optimization of the simple line regression mode	39
6.2.3Optimization of the GM (1, 1) model	39
6.3 Validation of the principal assumption	40
7. Recommendation	41
References	

LIST OF TABLES

Table 2.1 – The growth rate of port container throughput per year 10
Table 2.2 – The standard deviation of growth rate of port container throughput per
year
Table 4.1 -container throughput forecasting of Qingdao port in third exponential
smoothing and 12 original data
Table 4.2 –container throughput forecasting of Qingdao port in third exponential
smoothing and 6 original data
Table 4.3-container throughput forecasting of Qingdao port in third exponential
smoothing and 6 original data
Table 4.4-container throughput forecasting of Qingdao port in third exponential
smoothing and 12 original data
Table 4.5-container throughput forecasting of Qingdao port in grey system
GM(1,1)and 12 original data
Table 4.6-container throughput forecasting of Qingdao port in grey system
GM(1,1)and 6 original data
Table 5.1–Groups of forecasting result MAPE
Table 5.2–Forecasting Result MAPE in the Adequate Data 31
Table 5.3–Forecasting Result MAPE in the Limited Data 32
Table 5.4–Changing percentage of forecasting result MAPE between the adequate
data and limited data

LIST OF FIGURES

Figure 1.1 SOP of market forecasting
Figure 1.2 judgmental way and statistical way in the market forecasting2
Figure 1.3 SOP of evaluation
Figure 4.1 The Operation Process in Forecasting Models17
Figure 4.2-container throughput forecasting of Qingdao port in third exponential
smoothing and 6 original data
Figure 4.3–container throughput forecasting of Qingdao port in third exponential
smoothing and 12 original data
Figure 5.1-Changing percentage of forecasting result MAPE between the
adequate data and limited data

LIST OF ABBREVIATIONS

- CFS Container Freight Station
- CY Container Yard
- RMG Rail Mounted Gantry
- RTG Rubber Tired Gantry
- TEU Twenty-foot Equivalent Unit
- APE Absolute percentage error
- MAPE Mean absolute percentage error
- SOP Standard operation procedure

1. Introduction

1.1 Background of Market Prediction

Predictions of future developments are called forecasts. Forecasting is very important in many aspects, since predictions could be incorporated into the decision making process. The following table shows the Standard operation procedure (here after as abbreviations of SOP) of market forecasting, from the beginning of formulating problem to the end of using forecasts. Obtaining information, selecting methods, implementing methods and evaluating methods are all indispensable. Many articles focus on the single part of the process of forecasting, some articles aim the whole procedure of the forecasting.

This thesis highlights the evaluation step, and focus on the evaluation of forecasting methods.

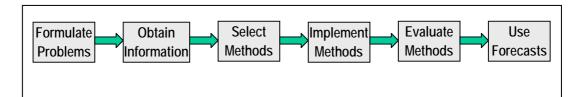


Figure 1.1 SOP of market forecasting Source: J. Scott Armstrong (2000) *Principles of Forecasting*

Forecasting could be divided into judgmental way and statistical way, in most of criteria, forecasting results are got in the combined process of two directions, which are also called magic and computer that are two weapons of most of forecasters. The following table shows how the two ways work respectively and together to get the forecasting results in the end.

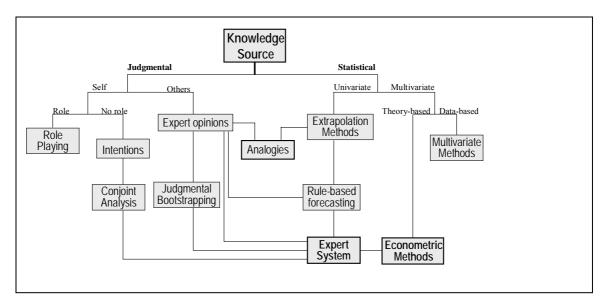


Figure 1.2 judgmental way and statistical way in the market forecasting Source: J. Scott Armstrong (2000) *Principles of Forecasting*

According to the figure 1.2, there are two functions of forecasting: judgmental way and statistical way. This thesis does research working in the scope of statistical way.

1.2 The Function of the Prediction of the Container Port Throughput

The export trade development in China is so fast, which deeply astonish the world. The port is an important part in the demand chain of this export trade. And, the fast growth speed of port container throughput expresses this amazing phenomenon in the angle of transportation.

In the long run, the investment and strategic management sometime are supposed to be convinced by the forecasting results. Throughput forecasting is the foundation of the research in the port development tactic and it's important for port planning and building. Basing on the forecasting result of port throughput, we can decide the direction of port development, the amount of port investment. Strategic management requires forecasts of container port throughput in order to make plans for the demand for the areas of the foundations of the port such as the CY and CFS, the numbers of the berths, handling machines maintenance and cooperation with other partners in the relevant supply chain such as customs, the cargo agent, railway transportation and warehouse and so on.

In the short run, the prediction of the container port throughput is the demand for the management of port operation such as plan transportation schedules, price and cost change, technological change, manpower's structure and purchasing plan for the numbers of RTG and RMG.

1.3 Literature Review

There are four types of articles in the field of forecasting throughput of container port. The first is the application of the classic methods. The second is the optimization of the classic methods. The third is the combined forecasting. The last is the comparison forecasting methods characters according to the concrete case. 1

Articles of container throughput forecasting barely touch the evaluation of forecasting methods. ²The second kind of thesis hardly expresses the guidelines of the optimizing forecasting, in the optimizing process. ³ the forecaster generally modify the forecasting model along the experience route, for example, some forecaster believe adequate data could help get the more accurate forecasting result than limited data, however adequate data is not always benefit the forecasting result

¹ Hsu, C.I., and Wen, Y.U. (1998) Improved Grey prediction models for trans-Pacific air passenger market, Transp. Plann. Technol, Vol. 22, . 87–107.

² Li, D.H. (2004) Verhulst model to pfuscousicate ground displacement and deformation. Coal Science and Technology, Vol. 32, No. 3, 58-59.

³ Tull, D. S. (1967), "The relationship of actual and pfuscousicted sales and profits in new-product introductions," Journal of Business, 40, 233-250

in the forecasting process, on the contrary, in some circumstance, limited data could lead to the more accurate forecasting result; the last kind of articles hardly show the adequate reasons why several forecasting methods are picked up in hundreds of forecasting method, they used to choose the forecasting method regarding the experience or the suggestion of the expert. ⁴ After the whole forecasting process, they would compare the forecasting result to forecasting results of other forecasting methods. By this way readers are convinced to get the truth that the new combined forecasting methods is much better.

1.4 Research Objectives

My research objectives are the choice of the forecasting models and the optimization of the forecasting models.

First, the choice of the forecasting models is that when the port fulfills some circumstances, the best composition of forecasting models are chosen for this port in the combinational prediction of container throughput. ⁵

Second, the optimization of the forecasting models is that after the forecasting models are confirmed in the combinational prediction of container throughput, the guideline and direction for the optimization of this forecasting model are chosen and verified.

My research objectives solve the following problems:

First, the principal of forecasting model choice provides the simple function of forecasting model choice to the forecasters who do forecasting research for the

⁴ Wagenaar, W. A., R. Schreuder & A. H. C. Van den Heijden (1985), "Do TV pictures help people to remember the weatherforecast?" Ergonomics, 28, 756-772.

⁵ Webby, R., M. O'Connor & M. J. Lawrence (2001), "Judgmental time series forecasting using domain knowledge," in J. S.

pointed port in the prediction of the container throughput.

Second, the guideline and direction of the optimization for the forecasting models provide the optimizing possibility and choice for forecasters who do forecasting research with the pointed forecasting models in the prediction of the container throughput.

In the beginning of the forecasting method choice, if some principal could supply the forecasters some choices, the burden of the forecasters in the combined forecasting will be reduced. And the guideline and direction of the optimization will help improve the accuracy of the foresting results.

1.5 analysis tool & Structure of the Dissertation

Figure 1.3 SOP of evaluation

The SOP (standard operation procedure) for the choice of forecasting method in the combined forecasting circumstance and the directions and guideline in the optimizing forecasting procedures is illustrated and structured, which is in order to find out the principles of the forecasting method choosing process in the combined forecasting circumstance and the guideline and directions of the optimizing forecasting.

The first sub-point is the test of the applicable forecasting models in the circumstance, if the forecasting pass the first sub-point, the forecasting model could be used in the rest of SOP; in the opposite, the model is eliminated. The second sub-point is the choosing research direction between the forecasting model choice and the optimization of the model. Two directions are freely chosen according to the practical demand. The write carry on both of the directions in the forecasting research so as to get the relatively new conclusion.

SOP of evaluation of container throughput forecasting is the principal assumption to solve the related questions in the container throughput forecasting, which is structured and supposed by the writer. This SOP need large amount of practical validation. In this thesis, the writer will prove the assumption in the restricted scope and get the conclusion in the classifications of forecasting researching.

First, the principals of choosing forecasting method in the chosen forecasting methods range and in the named classifications of the research objects will be got, which is the choice of named forecasting method in the practical case. For example, some kind of forecasting method may be the best choice to some type of port in the named circumstances according to the theory and principal assumption.

7

Second, on the assumption that the data resource scope is the guideline of forecasting optimizing; the choice between adequate data and limited data will prove the direction in the SOP of the forecasting optimizing. For example, to some kind of port in the named circumstances, the best optimizing guideline in certain forecasting method is decreasing the amount of the data.

The organization of this dissertation is as follows. Chapter 1 is the introduction of market forecasting, port container throughput forecasting. Chapter 2 highlights the classifications of container port in which characteristics of container port are listed by various parameter criteria. Chapter 3 elaborates the characteristics and application of three kinds of throughput forecasting methods. Chapter 4 proposes concrete calculation in one case. Chapter 5 analyzes he data table. Chapter 6 summarizes the conclusions drawn from the research. Chapter 7 provides the recommendations for the deeper research to justice the theory assumption.

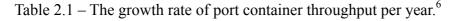
2. Ports Classification

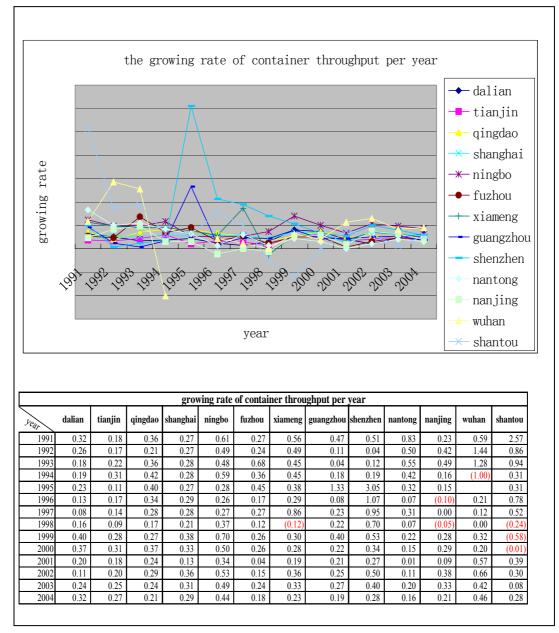
2.1 The Operation Procedure of the Classification

The whole grouping procedure is formed by three steps:

The first step groups the ports according to the growth rate of container throughput per year;

The second step groups the ports according to standard deviation of growth rate of container throughput;


The third step picks up the pointed port and names the concrete restriction.


The whole process shrink the scope little by little, meanwhile the criteria of grouping is more and more detailed, all of ports are put in the more specific scope, at last the pointed ports are chosen and restriction is named. The thesis only chooses the limited series in all of classifications, which just proves the theory assumption in the limited circumstance.

The reasons of the classifications are followings:

The aim of this thesis is to evaluate the port container throughput forecasting methods; the port is undoubtedly becoming the research object. While, there are so many ports that could be considered into become the research object, even in China there are many ports in the scope of the researching of evaluating the port container throughput forecasting methods, so there are two critical things needed to be done: first, which port could be chosen in the scope of the researching of evaluating the port container throughput forecasting methods; second, what kind of categories function could be adapted? And, this kind of classification could solve those questions.

2.2 The criteria of Growth Rate of Container Throughput per Year

According to the table 2.1, each value in the table2.1 is the growth rate of container throughput per year, which is got by the calculation that the difference between the

⁶ Appendix table1-table10

close year's values of container throughput per year divides the first year's value of container throughput per year. It could represent the growth speed of container throughput per year in some ports. Meanwhile, the series of same values in the vertical line could express the fluctuation of growth rate of port container throughput. For example, according to the table, the large fluctuation of the curve could express the large fluctuation of growth rate of port container throughput. The bracketed values represent the growth rate value is negative, that is to say, the container throughput in the year is going down than the value in the last year, so the fuscous and bracketed values represent there used to be negative growth trend in the history of the container throughput in some ports.

Therefore, regarding to the criteria of the growth rate of container throughput per year, ports could be divided into respective groups regarding the fluctuation of growth rate of port container throughput. All of ports could be divided into the two classifications: first is the ports in the fluctuation of growth degree of port container throughput with negative increasing trend, which are exclusive out of the research scope in this thesis, they are Shantou, Naning, Xiamen and Wuhan; second is the most of ports that do not have negative growth trend in the history of the container throughput. Those ports need to be further divided regarding the next criteria.

In the summary, the scope of the ports could be reduced:

First, port need to be the international port, which ensures that the same group of ports is affected by the parallel motives and aims. This type of ports is all expressing the relationship between China and other countries. Otherwise, the local port could be highly affected by the area economic development. And, different areas have their own economic features.

Second criteria is the port without the negative growth trend, that is to say, there is no negative value in the vertical line in the table of growth rate of container throughput and there used to be not negative growth trend in the history of the container throughput in some ports.

2.3 The Criteria of Standard Deviation of Growth Rate of Container Throughput per Year

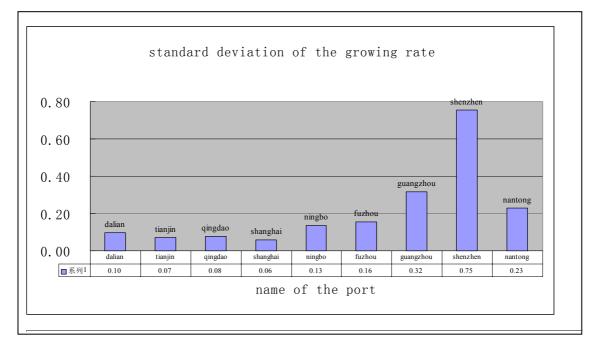


Table 2.2 – The standard deviation of growth rate of port container throughput per year.

According to the Table 2.2, the each value in the table is the standard deviation of growth rate of container throughput, which is got by the calculation in the software of excel with growth rate of container throughput per year. It could represent the distribution degree of growth rate of container throughput in some ports. And, the big value of standard deviation of growth rate of container throughput in some ports. In the separate distribution of growth rate of container throughput in some ports. In the opposite, the small value of standard deviation of growth rate of container throughput in some ports.

could express the close distribution of growth rate of container throughput in some ports.

Therefore, according to the criteria of standard deviation, ports could be divided into respective classifications regarding standard deviation of growth rate of container throughput. Qingdao, Dalian and Ningbo could represent the close distribution of growth rate of container throughput in some ports; Fuzhou, Guangzhou and Nantong could represent the largest the fluctuation of growth degree of port container throughput without negative increasing trend.

In the end, the classifications of the port are finished; the followings are the classifications in the scope of this thesis:

First classification are Qingdao, Dalian and Ningbo chosen to represent the international port, whose standard deviation of growth rate of container throughput is in the restriction between 0.08 and 0.15 without negative growth trend.

Second classification in the scope of this thesis are Fuzhou, Guangzhou and Nantong are chosen to represent the international port, whose standard deviation of growth rate of container throughput is in the restriction between 0.15 and 0.32 without negative growth trend.

13

3. Forecasting Method Chosen

The port container throughput forecasting methods are chosen for the evaluation. In fact, the time series forecasting, regression forecasting and grey system are confirmed, which are universal in the container throughput forecasting. In detail, the third exponential smoothing in the time series forecasting, simple line regression in the regression forecasting and GM(1,1) in the grey system are chosen, which are classic in the usage of container throughput forecasting and respective forecasting method series.

3.1 Time Series Forecasting

Forecasting by time series regression is to build time series regression model by the historic data resources, and forecast the future by the usage of the model. There are two assumptions in the time series regression: First, the parameters which decide the developing trend in the past several years will affect the developing trend in the next several years. Second, the process of development mostly is step by step, and is hardly sudden changing.

Moving average forecasting belonging to time series forecasting calculates the average value of the groups of historic data resources, and forecast the future by the average value. Moving average forecasting could be divided into sample average method, sample moving average method and second moving average method. Moving average method is easy to understand and avoid the seasonal varieties in the data resources.

Exponential smoothing method develops from the time series and becomes one of

time series forecasting method. The character of exponential smoothing is to get the relevant predicted value according to the actual value and historic prediction. In the process of forecasting the container port throughput, exponential smoothing assume that container port throughput develop regarding the level trend, and focus on recent container port throughput that affect the item in the next period in the largest degree. On the assumption that long-term throughput hardly influent the item in the next period, the percentage of consideration on the long-term throughput is relatively small. The common exponential smoothing is divided into the first exponential smoothing, second exponential smoothing and third exponential smoothing.

The time series are constantly used in the forecasting of container throughput, which do have the features of the simplifying of the forecasting model and the good reaction to the fluctuation of the original data

3.2 Regression Forecasting

Regression forecasting is based on numeral statistics relationship between two items. Regression models describe the relationship through measurable datasheet. Regarding the type of function between independent variables and variables, regression model could be classified into liner regression. Meanwhile, regarding the amount of independent variables, liner regression could be classified into simple liner regression and multiple regressions.

The followings are basic means of regression:

First, analyze the groups of the data, and find out the certain function relationship among the groups of variables.

Second, analyze the degree of the relationship between independent variables and

variables. And, calculate the concrete value of the coefficients.

Third, regarding the relevant original data, certain function and parameters, forecast the value of the object. And, make the process of quality assessment and errors of the result.

Regression is based on the principle between cause and effect, which express the high reliability in the container throughput forecasting. Therefore, regression is the reasonable forecasting methods in the prediction of the port throughput.

3.3 Grey System Forecasting

Grey theory focuses on model uncertain information insufficiency in analyzing systems on prediction and decision-making, which covers by The GM (1,N) model, the GM (1,1) model and the grey Verhulst model include data processing, modeling and prediction. The grey theory mainly works on systems with poor and incomplete information. The GM (1, N) model, the GM (1, 1) model and the grey Verhulst model are the main models in grey theory. The GM (1, N) model fit for application to systems, analysis, data processing, prediction. The GM (1, 1) model is suitable for up-to-date data to forecast future values. The grey Verhulst model is a extra model in the grey system.

The GM(1,1) is frequently used grey forecasting model, which is a time series forecasting model. The GM(1,1) model is relatively applicable to describe the various process. The popular grey model, GM(1,1) is efficient for port throughput forecasting.

4. Forecasting Model Application

Because the article does no focus on the forecasting results of some ports, the calculation of the forecasting models is just simply illustrated.

As the concrete forecasting process of other ports is similar to Qingdao port, the other calculation table calculation procedure will be ignored and be given in the Appendix part.

4.1 The Operation Process in Forecasting Models

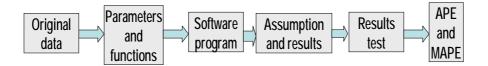


Figure 4.1 The Operation Process in Forecasting Models

- A, The original data are chosen and collected. The port container throughput of each port per year is chosen. The fifteen data of each port from 1990 to 2004 are collected. As accuracy and the sameness of other data in each port such as GDP in the certain areas is difficult, other related data are out of the picked range.
- B, The functions and parameters of the certain kind of forecasting method need to be clarified and explained according to the concrete research object and original data.
- C, The program language are built through the function and software of excel, which could simplify the choice of the guideline for forecasting models optimization and have the forecasting result more clear.

- D, The original data input in the program and forecasting result could be got. Especially, on the assumption that the latest original data of the container throughput in the last three years from the year of 2002 to the year of 2004 are all unknown, the rest of original data input in the program, and the forecasting result are got as the container throughput of the last three years.
- E, The test need to be done, which focus on the forecasting value and make the judgments whether the forecasting result are accepted.
- F. Then, the APE (absolute percentage error) could be calculated that the difference between the forecasting result and collected practical value divide collected practical value. The MAPE (mean absolute percentage error) is the average of APE in three years.

4.2 The Operation Process in Third Exponential Smoothing Model

The followings are the functions of third exponential smoothing model:

$$Y(t+1) = \alpha X(t) + (1 - \alpha) Y(t)$$

 $S_{i}^{(1)} = \alpha X_{i} + (1 - \alpha) S_{i-1}^{(1)}$ $S_{i}^{(2)} = \alpha S_{i}^{(1)} + (1 - \alpha) S_{i-1}^{(2)}$ $S_{i}^{(3)} = \alpha S_{i}^{(2)} + (1 - \alpha) S_{i-1}^{(3)}$

$$a_{i} = 3 S^{(1)}_{i} - 3 S^{(2)}_{i} + 3 S^{(3)}_{i}$$

$$b_{i} = \frac{\alpha}{2(1-\alpha)^{2}} \left[(6-5\alpha) S^{(1)}_{i} - 2(5-4\alpha) S^{(2)}_{i} + (4-3\alpha) S^{(3)}_{i} \right]$$

$$c_{i} = \frac{\alpha^{2}}{2(1-\alpha)^{2}} \left[S^{(1)}_{i} - 2S^{(2)}_{i} + S^{(3)}_{i} \right]$$

X(t) means origin data in the t point.

Y(t) means forecasting value in the t point.

 α is smoothing parameters.

S $_{\rm t}$ $^{(1)}$ means smoothing parameters in the t point under the first exponential

smoothing model.

S $_{t}$ ⁽²⁾ means smoothing parameters in the t point under the second exponential smoothing model.

S $_{t}$ ⁽³⁾ means smoothing parameters in the t point under the third exponential smoothing model.

 $a_t b_t c_t$ are all smoothing parameters under the third exponential smoothing model.

It is built and calculated by excel that forecasting process of container throughput of Qingdao port is under third exponential smoothing model.

First, put the original data into the data column, according to the consequence of the year.

Second, according to the function, put the basic equation in the basic cell.

C6=D6=E6=F6 D7=\$D\$4*C7+D6*(1-\$D\$4) E7=\$D\$4*D7+E6*(1-\$D\$4) F7=\$D\$4*E7+F6*(1-\$D\$4) G6=3*(D6-E6)+F6 $H6=($D$4/2*(1-$D$4)^2)*((6-5*$D$4)*D6-(10-8*$D$4)*E6+(4-3*$D$4)*F6)$ $I6==$D$4^2/(1-$D$4)^2*(D6-2*E6+F6)$ J18=H17+G17+H17 J19=G17+H17*2+H17*4 J20=G17+H17*3+H17*9 K18==ABS ((J18-C18)/C18)

H20==AVERAGE (K18:K20)

I20=STDEV (K18:K20)

Third, copy the basic equation into other cells.

ł	В	С	D	E	F	G	Н	Ι	J	K	L
	contain	er through	put forecast	ing of Qingd	ao port in thi	rd exponentia	al smoothi	ng and 12 o	riginal dat	а	┝
		X=	0.65								
/ear	number	data	S ₁	S_2	S ₃	a _t	b _t	ct	forecast	APE	
1990	1	28.58	28.584	28.584	28.584	28.584	0.000	0.000			
1991	2	33.77	31.955	30.775	30.008	33. 548	0.067	1.424			
1992	3	39.35	36.762	34.667	33.036	39.322	0.096	1.604			
1993	4	48.19	44. 191	40.857	38.120	48.120	0.142	2.056			
1994	5	63.09	56.476	51.010	46.498	62.898	0.230	3.295			1
1995		70.2		60.361	55.509	70.616	0.155	0.633			1
1996	7	82.3		70.776	65.433	82.256	0.178	0.912			1
1997	8	93.6		81.695	76.003	93.641	0.179	0.647			1
1998	9	101.8		91.527	86.094	101.976	0.136	-0.480			1
1999	10	130.2		109.071	101.029	129.369	0.378	4.845			1
2000	11	170.8		137.300	124.605	170.207	0.628	8.641			1
2001	12	201.1	184.090	167.714	152.626	201.755	0.562	4.444			1
2002	13	240.8					MAPE		206.761	0.141	1
2003	14						=		220.654	0.268	1
2004	15	381.6					0.257		243.435	0.362	2

Table 4.1 –container throughput forecasting of Qingdao port in third exponential smoothing and 12 original data

Table 4.2 –container throughput forecasting of Qingdao port in third exponential smoothing and 6 original data

	containe	er through	put forecasti	ng of Qingda	o port in thir	d exponentia	l smoothir	ng and 6 or	riginal data		-
		X=	0.5								T
ear	number	data	S ₁	S ₂	S ₃	a _t	b _t	ct	forecast	APE	
1998	1	81	81	81	81	81	0	0			
1999	2	103.3	92.150	86.575	83.788	100.513	0.784	2.787	81.000		
2000	3	121.3	106.725	96.650	90.219	120.444	1.199	3.644	104.084		
2001	4	154.2	130.463	113.556	101.888	152.606	1.875	5.237	125.287		
2002	5	212	171.231	142.394	122.141	208.653	3.144	8.584	159.719		
2003	6	263.9	217.566	179.980	151.060	263.818	3.703	8.666	220.381		
2004	7	341						MAPE	276.188	0.190	
2005	8	423.9						П	305.890	0.278	
2006	9	514						0.261	352, 925	0.313	

Fourth, test the percentage of the accuracy of the model.

Fifth, according to the forecasting result, the MAPE is calculated to get the value of 0.257 in the 12 original data and 0.261 in the 6 original data.

4.3 The Operation Process in Simple Line Regression Model

It is described that forecasting process of container throughput of Qingdao port is under regression forecasting, simple liner regression model.

The followings are the functions of regression forecasting, simple liner regression model:

$$b = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$a = \frac{\sum y_i \sum x_i^2 - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$n$$
$$S = \sum (yi - (a + bxi))2$$

X(t) means origin data in the t point

Y(t) means forecasting result in the t point.

	В	С	D	E	1				
container throughput forecasting of Qingdao port in third									
exponential smoothing and 6 original data									
year	number data forecast APE								
1998	1	81	79.341		5				
1999	2	103.3	100. 580		6				
2000	3	121.3	127.505		7				
2001	4	154.2	161.638		8				
2002	5	212	204.907		9				
2003	6	263.9	259.760		10				
2004	7	341	329.296	0.036	11				
2005	8	423.9	417.447	0.015	12				
2006	9	514	529.195	0.029	13				
				MAPE	14				
				0.027	15				

Table 4.3-container throughput forecasting of Qingdao port in third exponential smoothing and 6 original data

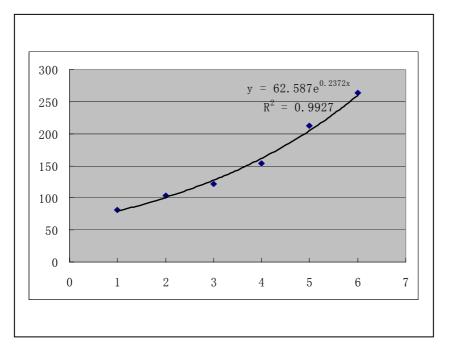


Figure 4.2-container throughput forecasting of Qingdao port in third exponential

smoothing and 6 original data

Table 4.4-container throughput forecasting of Qingdao port in third exponential smoothing and 12 original data

А	В	С	D	Е	1			
container throughput forecasting of Qingdao port								
in third exponential smoothing and 12 original data								
year	number	data	forecast	APE	4			
1990	1	28.58	28.687		5			
1991	2	33.77	34.108		6			
1992	3	39.35	40.554		7			
1993	4	48.19			8			
1994	5	63.09			9			
1995	6	70.2	68.165		10			
1996	7	82.3			11			
1997	8	93.6			12			
1998	9	101.8			13			
1999	10	130.2			14			
2000	11	170.8	161.973		15			
2001	12	201.1	192.584		16			
2002	13	240.8		0.049	17			
2003	14	301.5	272.253	0.097	18			
2004	15	381.6	323.705	0.152	19			
			MAPE		20			
			0.099		21			

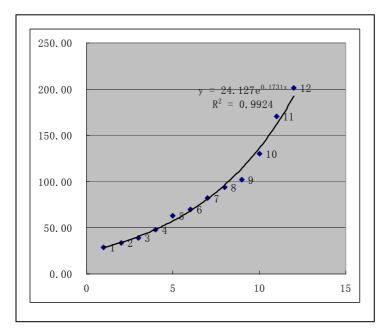


Figure 4.3–container throughput forecasting of Qingdao port in third exponential smoothing and 12 original data

a and b are parameters under regression forecasting, simple liner regression model.. It is built and calculated by excel that forecasting process of container throughput of Qingdao port is under regression forecasting, simple liner regression model.

First, put the original data into the data column, according to the consequence of the year.

Second, test the percentage of the accuracy of the mode by the equation and the value of R.

Third, according to the forecasting result, the MAPE is calculated to get the value of 0.099 in the 12 original data 0.027 in the 6 original data.

4.4 The Operation Process in GM(1,1) Model

It is described that forecasting process of container throughput of Qingdao port is under grey system, GM(1, 1) model.

The followings are the functions of third grey system, GM(1, 1) model:

$$Y_t = \sum_{r=0}^{t} X_r \qquad (t = 0, 1, 2, \dots, n)$$
(1)

$$Z_{t} = 1/2(Y_{t} + Y_{t-1}) \qquad (t = 1, 2, 3, \dots, n)$$
(2)

$$\frac{dY_t}{dt} + \alpha Y t = \mu \qquad (3)$$

$$Y_{t} = (X_{0} - \frac{\mu}{\alpha}) e^{-\omega} + \frac{\mu}{\alpha} \qquad (t = 0, 1, 2, \cdots, n)$$
(4)

$$\alpha = \left[\left(\sum_{i=1}^{n} X_i \right) \left(\sum_{i=1}^{n} Z_i \right) - n \left(\sum_{i=1}^{n} Z_i X_i \right) \right] \neq D$$
(5)

$$\mu = \left[\left(\sum_{i=1}^{n} Z_i^2 \right) \left(\sum_{i=1}^{n} X_i \right) - \left(\sum_{i=1}^{n} Z_i \right) \left(\sum_{i=1}^{n} Z_i X_i \right) \right] \neq D$$
(6)

$$D = n \left(\sum_{i=1}^{n} Z_{i}^{2}\right) - \left(\sum_{i=1}^{n} Z_{i}\right)^{2}$$
(7)

$$\hat{X}_{t} = Y_{t-1} \quad (t = 1, 2, 3, \dots, n)$$
 (8)

$$\delta(t) = X_t - \hat{X}_t$$

$$S_t = \sqrt{\frac{\sum_{j=1}^{n} (\delta_i - \overline{\delta})^{-2}}{n}}$$

$$S_2 = \sqrt{\frac{\sum_{j=1}^{n} (X_t - \overline{X})^{-2}}{n}}$$

$$C = S_t \neq S_2$$

X(t) means origin data in the t point.

Y(t) means forecasting result in the t point.

 α µ and D are all grey system parameters under GM(1,1) model.

It is built and calculated by excel that forecasting process of container throughput of Qingdao port is under grey system, GM(1, 1) model.

First, put the original data into the data column, according to the consequence of the

year.

Second, according to the function, put the basic equation in the basic cell.

D5=C5

D6=D5+C6

E6=(D5+D6)/2

F6=C6*E6

G6=POWER(E6,2)

H6=\$F\$23*EXP(-\$D\$22*B6)+\$F\$22

I6=H6-H5

J6=C6-I6

K6=ROUND(J6/C6*100,2)

C17=SUM(C6:C16)

D19=ROUND(STDEVP(C6:C16),2)

D21=ROUND(B16*G17-POWER(E17,2),4)

D22=ROUND((E17*C17-B16*F17)/D21,4)

D23=ROUND((C17*G17-E17*F17)/D21,4)

F22=D23/D22

F23=C5-F22

J23=ROUND(J21/D19,4)

K18=ABS(I18-C18)/C18

K22=AVERAGE(K18:K20)

Third, copy the basic equation into other cells.

Table 4.5-container throughput forecasting of Qingdao port in grey system GM(1,1)and 12 original data

A	В	С	D	E	F	G	Н	Ι	J	K	╇
	cont	ainer throu	ughput foreo	casting of	Qingdao p	ort in grey	system Gl	M(1,1)and 12	2 original dat	a	-
vear	number	Х	у	Z	XZ	ZZ	yt	forecast			T
1990	0	28.58	28.5839				28.5839				
1991	1	33.77	62.354	45.46895	1535.491	2067.4254	60.71255	32.129	1.641		
1992	2	39.35	101.7043	82.02915	3227.872	6728.7814	99.13141	38.419	0.931		
1993	3	48.19	149.8949	125.7996	6062.358	15825.539	145.072	45.941	2.250		
1994	4	63.09	212.9866	181.4408	11447.41	32920.746	200.0068	54.935	8.157		
1995	5	70.2		248.0866		61546.961	265.6969	65.690	4.510		
1996	6	82.3	365.4866	324.3366	26692.9	105194.23	344.2479	78.551	3.749		
1997	7	93.6	459.0866	412.2866	38590.03	169980.24	438.1778	93.930	-0.330		
1998	8	101.8			51916.64				-10. 520		
1999	9	130.2				391859.22	684.8071	134.310	-4.110		
2000	10	170.8		776.4866				160.605	10.195		
2001	11	201.1				926284.21			9.051		
	12	1034.403		4294.345	564561.7	2575425.1	1267.109	229.648		APE	
2002	13	240.8	$S_2 =$				1541.718	274.609		0.140	
2003	14	301.5	51.44				1870.09	328.372		0.089	
2004	15	381.6					2262.752	392.662	S ₁ =	0.029	
		D=	9888280.4						2.620	MAPE	
		Х=	-0.1788	W/X=	-135.521				C=	0.086	
		W=	24.2311	X ₁ -W/X=	164.1046				0.0509		

Table	4.6-container	throughput	forecasting	of	Qingdao	port	in	grey	system
GM(1,	,1)and 6 origina	l data							

1	В	С	D	Е	F	G	Н	Ι	J	K	
(container t	throughput	t forecastin	g of Qing	dao port ii	n grey syste	em GM(1,	1)and 6 or	riginal data	ì	F
vear	number	Х	у	Z	XZ	ZZ	yt	forecast			Γ
1998	0	81	81				81	81			
1999	1	103.3	184.3	132.65	13702.75	17596.023	177.6129	96.61288	6.687		
2000	2	121.3	305.6	244.95	29712.44	60000.503	301.5175	123.9046	-2.605		
2001	3	154.2	459.8	382.7	59012.34	146459.29	460. 4234	158.9059	-4.706		
2002	4	212	671.8	565.8	119949.6	320129.64	664.2179	203.7945	8.206		
2003	5	263.9	935.7	803.75	212109.6	646014.06	925.5814	261.3635	2.537		
	6	854.7	2557.2	2129.85	434486.7	1190199.5	1260.776	335. 1949		APE	
2004	7	341	S ₂ =				1690.659	429.8826		0.261	
2005	8	423.9	59.41				2241.977	551.3182		0.301	
2006	9	514					2949.035	707.0576	$S_1 =$	0.376	
		D=	1414736.6						5.039	MAPE	
		Х=	-0.2488	W/X=	-261.01				C=	0.312	
		W=	64.9393	$X_1 - W / X =$	342.01				0.085		
		•	•	•	•						-

Fourth, test the percentage of the accuracy of the mode by the equation and the value of c. If the value of c is more than 0.35, the grey system needs to be modified. If the value of c is less than 0.35, the grey system is successful.

Fifth, according to the forecasting result, the MAPE is calculated to get the value of 0.086 in the 12 original data 0.0312 in the 6 original data

5. Forecasting Results Analysis

5.1 Groups of Forecasting Result MAPE

The analysis is around the MAPE of the forecasting results. Therefore, All the MAPE values are categorized into six groups according to the type of two parameters: the forecasting method and the standard deviation of the port container throughput growth rate.

Table 5.1–Groups of forecasting result MAPE

D PORT HO	Third exponential smoothing	simple liner Regression	GM(1,1)	STDEV
Qingdao Dalian Ningbo	Α	В	С	0.08-0.15
Fuzhou Guangzhou Nantong	D	Ε	F	0.15-0.32

A: The forecasting method is third exponential smoothing, and the standard deviation of the port container throughput growth rate is in the restriction between 0.08 and 0.15.

B: The forecasting method is simple liner regression, and the standard deviation of the port container throughput growth rate is in the restriction between 0.08 and 0.15.

C: The forecasting method is GM(1,1), and the standard deviation of the port

container throughput growth rate is in the restriction between 0.08 and 0.15.

D: The forecasting method is third exponential smoothing, and the standard deviation of the port container throughput growth rate is in the restriction between 0.15 and 0.32.

E: The forecasting method is simple liner regression, and the standard deviation of the port container throughput growth rate is n the restriction between 0.15 and 0.32.

F: The forecasting method is GM(1,1), and the standard deviation of the port container throughput growth rate is n the restriction between 0.15 and 0.32.

5.2 Circumstance One: Forecasting Result MAPE in the Adequate Data

D PORT HO	Forecasting result MAP Third exponential	simple liner	GM(1,1)
ORTHO	smoothing	Regression	$\operatorname{UWI}(1,1)$
Qingdao	25.72%	9.93%	8.62%
Dalian	17.33%	5.87%	18.25%
Ningbo	45.17%	12.42%	7.57%
Fuzhou	18.77%	52.77%	52.79%
Guangzhou	27.85%	15.39%	43.88%
Nantong	12.27%	7.85%	45.37%

Table 5.2-Forecasting Result MAPE in the Adequate Data

All the values are calculated in the application of models part. The first line value is got from the case of Qingdao in the Chapter4, and other values could be checked in the appendix.

According to the table, in the circumstance of adequate data:

in the first classification, the forecasting result of third exponential smoothing is worst accurate in all of Qingdao, Dalian and Ningbo port, which could be judged from the highest mean absolute percentage in the group A and indicated by the fuscous color. In the opposite, simple liner regression and GM(1,1) supply the most accurate forecasting result respectively in the group B and group C, which is indicated by the tint color.

Therefore, in the combined forecasting, in the first classification ports, third exponential smoothing is the last chosen forecasting method in the series forecasting methods. Even, third exponential smoothing is considered in the combined forecasting; it would be given the lowest weighted in the calculation of the forecasting result under the reasonable distribution of weighted mean.

In the second classification, the forecasting result of GM(1,1) is worst accurate in all of Qingdao, Dalian and Ningbo port, which could be judged from the highest mean absolute percentage in the group C and indicated by the fuscous color. In the opposite, simple liner regression and third exponential smoothing supply the most accurate forecasting result respectively in the group D and group E, which is indicated by the tint color.

Therefore, in second classification ports, GM (1, 1) is the last chosen forecasting method in the series forecasting methods. Even, GM (1, 1) is considered in the combined forecasting, it would be given the lowest weighted in the calculation of the forecasting result under the reasonable distribution of weighted mean.

5.3 Circumstance Two: Forecasting Result MAPE in the Limited Data

	Forecasting result MA	APE in the limited da	ata
D. Mar	Third exponential	simple liner	CM(1,1)
TORT THO	smoothing	Regression	GM(1,1)
Qingdao	26.06%	2.66%	31.23%
Dalian	15.63%	9.47%	56.72%
Ningbo	44.72%	4.13%	38.85%
Fuzhou	18.92%	7.48%	20.71%
Guangzhou	27.67%	4.88%	28.91%
Nantong	15.23%	8.50%	9.80%

Table 5.3-Forecasting Result MAPE in the Limited Data

According to the table5.3, in the circumstance of limited data:

In the first classification, the forecasting result of simple liner regression is best accurate in all of Qingdao, Dalian and Ningbo port, which could be judged from the highest mean absolute percentage and indicated by the tint color. In the opposite, third exponential smoothing and GM(1,1) supply the less accurate forecasting result respectively in the group A and group C.

In the second classification, the forecasting result of simple liner regression is best accurate in all of Qingdao, Dalian and Ningbo port, which could be judged from the highest mean absolute percentage in the group E and indicated by the tint color. In the opposite, third exponential smoothing and GM(1,1) supply the less accurate forecasting result respectively in the group D and group F.

Therefore, in the combined forecasting, in the both of classification ports, simple liner regression is the first chosen forecasting method in the series forecasting methods. If simple liner regression is considered in the combined forecasting, it would be given higher weighted in the calculation of the forecasting result under the reasonable distribution of weighted mean.

It is obvious that simple liner regression provides the most accurate forecasting result in the limited data situation, both in the two classifications, which is caused by the close relationship between the local or domestic economic development and the port-related trade in recent years. In this background relationship, other influenced parameters and criteria hardly affect the value in the future in the large degree.

5.4 Changing Percentage of Forecasting Result MAPE Between the

Adequate Data and Limited Data

Table 5.4–Changing percentage of forecasting result MAPE between the adequate data and limited data

Changing percentage of forecasting result MAPE between the adequate data and limited data										
Dr. Mar	Third exponential	simple liner	CM(1 1)							
^C ORT HO	smoothing	Regression	GM(1,1)							
Qingdao	-1.31%	273.60%	-72.41%							
Dalian	10.90%	-37.98%	-67.82%							
Ningbo	0.99%	200.30%	-80.52%							
Fuzhou	-0.81%	605.66%	154.88%							
Guangzhou	0.64%	215.44%	51.76%							
Nantong	-19.48%	-7.69%	363.08%							

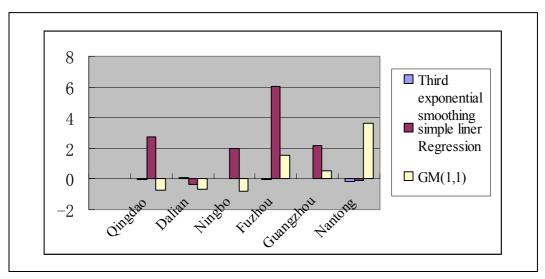


Figure 5.1–Changing percentage of forecasting result MAPE between the adequate data and limited data

According to the table5.4, the changing percentages of MAPE are calculated that the difference between MAPE in the adequate (12) data circumstance and in the limited data circumstance divide the MAPE in the limited (6) data circumstance. On the assumption on that the forecasting model is ensured in the first place, regarding the degree of the changing percentages of MAPE, optimizing guideline could be judged that whether it could improve the forecasting result. Then, if the guideline is accepted, the correct optimizing direction could be judged from the positive or negative value of the changing percentages of MAPE. This thesis choose the data resource as the optimizing guideline, if this guideline is accepted, the correct optimizing direction is supposed to be chosen between the adequate data and limited data.

According to the table5.4, in all the classifications:

First, third exponential smoothing expresses the least changing percentage of MAPE, which could be judged from the smallest value of changing percentage of forecasting result MAPE in the group A, D and could be indicated by the tint color. Meanwhile, the changing percentage degree of forecasting result MAPE could be investigated in the pillar table.

Therefore, in all the classifications, third exponential smoothing is barely influenced by the numbers of the original data among the series forecasting methods. If third exponential smoothing is considered in the optimizing forecasting or combined forecasting, the numbers of original data would be almost ignored in the calculation of the forecasting result in the optimizing process. Less energy could be put in the collection of the original data.

Second, GM(1,1) expresses the relatively larger changing percentage of forecasting result MAPE between adequate data and limited data of in group C and F, which

could be judged from the value changing percentage of forecasting result MAPE. The degree of changing percentage of forecasting result MAPE could be investigated in the pillar table.

Therefore, GM (1, 1) is much influenced by the numbers of the original data among the series forecasting methods. If GM(1,1) is considered in the optimizing forecasting, the numbers of original data would be highlighted. And, in the group C, the changing percentage is all negative, so the optimizing direction is from the a limited data to the adequate data, that is to say, on the assumption that GM(1,1) is adapted in the ports in the first classification of ports, the increasing of the amount of the parameters along time consequence in the permitted scope could help improve the forecasting results. In the opposite, in the group F the changing percentage is all positive, so the optimizing direction is from the adequate data to the limited data, that is to say, on the assumption that GM(1,1) is adapted in the ports in the second classification of ports, the reduction of the amount of the parameters along time consequence in the permitted scope could help improve the forecasting results.

Third, simple liner regression expresses the largest changing percentage of forecasting result MAPE between adequate data and limited data of in all of Qingdao, Dalian and Ningbo port, which could be judged from the biggest value of changing percentage of forecasting result MAPE in the group A and indicated by the fuscous color. The degree of changing percentage of forecasting result MAPE between adequate data and limited data in simple liner regression could be investigated in the line curve, which discovers the largest difference of changing percentage of forecasting result MAPE compared to other forecasting method.

Therefore, simple liner regression is much influenced by the numbers of the original

data among the series forecasting methods. If simple liner regression is considered in the optimizing forecasting or combined forecasting, the numbers of original data would be almost highlighted in the optimizing process. And, the changing percentage is positive in most of time, so the optimizing direction is from the adequate data to the limited data, that is to say, the reduction of the amount of the parameters along time consequence in the permitted scope could help improve the forecasting results in most of both categories of ports.

6. Conclusions

6.1 Forecasting Model Choice

6.1.1 Forecasting Models Choice in the First Classification

On the assumption on that the port is restricted in the named circumstance, the forecasting model could be chosen among the groups.

When the ports fulfill the following criteria: First, the port is mainly international port in China. Second, there is no negative growth trend of container throughput in the last 15 years. Third, the standard deviation of the port container throughput growth rate is in the restriction between 0.08 and 0.15..

In the circumstance of adequate data and in the combined forecasting: Third exponential smoothing is the last chosen forecasting method in the series forecasting methods.

In the circumstance of limited data and in the combined forecasting: Simple liner regression is the first chosen forecasting method in the series forecasting methods.

6.1.2 Forecasting Models Choice in the Second Classification

When the ports fulfill the following criteria: First, the port is mainly international port in China. Second, there is no negative growth trend of container throughput in the last 15 years. Third, the standard deviation of the port container throughput growth rate is in the restriction between 0.15 and 0.32.

In the circumstance of adequate data and in the combined forecasting: GM (1, 1) is the last chosen forecasting method in the series forecasting methods.

In the circumstance of limited data and in the combined forecasting: Simple liner regression is the first chosen forecasting method in the series forecasting methods.

6.2 Forecasting Model Optimization

6.2.1 Optimization of the Third Exponential Smoothing Model

The third exponential smoothing model is ensured, the changing percentage of MAPE is hardly varying in both categories of ports. Therefore, the data resource as the optimizing guideline is not accepted.

6.2.2 Optimization of the Simple Line Regression Model

The simple line regression model is confirmed, the changing percentage of MAPE is changing obviously in most of both categories of ports. Therefore, the data resource as the optimizing guideline is accepted. And, the changing percentage is all positive, so the optimizing direction is from the adequate data to the limited data in most of both categories of ports.

6.2.3 Optimization of the GM (1, 1) Model

The GM (1, 1) model is confirmed, the changing percentage of MAPE is changing obviously in all of ports. Therefore, the data resource as the optimizing guideline is accepted.

And, in the group C, the changing percentage is all negative, so the optimizing direction is from the limited data to the adequate data.

In the opposite, in the group F the changing percentage is all positive, so the optimizing direction is from the adequate data to the limited data.

6.3 Validation of the Principal Assumption

This theory and principal assumption has been confirmed because thesis has got the conclusion in the classifications of forecasting researching. In detail, according to the SOP for the choice of forecasting method in the combined forecasting circumstance and the guideline and direction in the optimizing forecasting procedures, the concrete choices of forecasting method for the classifications of port have been made, and the optimizing guideline and direction has been ensured for the concrete forecasting method.

However, the theory and principal assumption need to be further perfected by the large amount of practical validation.

7. Recommendation

Because of the limitation of time, energy and knowledge background, less forecasting methods, research object and parameters of direction are considered. In fact, much more research jobs could be done along this theory assumption.

On the one hand, more types of port could be divided and tested in the forecasting process. And, there are hundreds of forecasting methods in the port container throughput forecasting, and more classification ports could be put in the scope of forecasting research;

On the other hand, only three simple and classic forecasting models in three kinds of forecasting method series are in the range of this passage, more models and more kinds of forecasting method series could put in this theory assumption.

And, the conclusion of this thesis of forecasting models in those two classification ports is not absolute. Maybe, some port container throughput does not work according to the conclusion, because all of the forecasting conclusions are got in its own economic and information background and the conclusions. And, the theory assumption only obeys the most of objects principle.

References

Aczél, J. & Saaty, T.L. (1983). Procedures for synthesizing ratio judgments. *Journal of Mathematical Psychology*, 27, 93-102.

Whitecotton, S. M., D. E. Sanders & K. B. Norris (1998), "Imp roving reductive accuracy with a combination of human intuition and mechanical decision aids," *Organizational Behavior and Human Decision Processes*, 76, 325-348.

Wilkinson, L. & the Task Force on Statistical Inference (1999), "Statistical method in psychology journals," *American Psychologist*, 54, 594-604.

Willemain, T. R., C. N. Smart, J. H. Shockor & P. A. DeSautels (1994), "Forecasting intermittent demand in manufacturing: Acomparative evaluation of Croston's method," *Journal of Forecasting*, 10, 529-538.

Wittink, D. & T. Bergestuen (2001), "Forecasting with conjoint analysis," in J. S. Armstrong (ed.), *Principles of Forecasting.Norwell, MA: Kluwer Academic Publishers*.

Yokum, T. & J. S. Armstrong (1995), "Beyond accuracy: Comparison of criteria used to select forecasting methods," *Journal of Forecasting*, 11, 591-597. Full text at hops.wharton.upenn.edu/forecast.

Makridakis, S. & R. Winkler (1989), "Sampling distributions of post-sample forecasting errors," *Applied Statistics*, 38, 331-342.

Rosenthal, R. & K. L. Fode (1963), "The effect of experimenter bias on the performance of the albino rat," *Behavioral*8, 183-189.

Rowe, G. & G. Wright (2001), "Expert opinions in forecasting: The role of the Delphi technique," in J. S. Armstrong*Principles of Forecasting*. Norwell, MA: Kluwer Academic Publishers.

Rush, H. & W. Page (1979), "Long-term metals forecasting: The track record: 1910-1964," *Futures*, 1, 321-337.

Tiegen, K. H. (1983), "Studies in subjective probability III: The unimportance of

alternatives," *Scandinavian Journal of Psychology*, 24, 97-105. Tull, D. S. (1967), "The relationship of actual and pfuscousicted sales and profits in new-product introductions," *Journal of Business*, 40, 233-250.

Wagenaar, W. A., R. Schreuder & A. H. C. Van den Heijden (1985), "Do TV pictures help people to remember the weather forecast?" *Ergonomics*, 28, 756-772.

Webby, R., M. O'Connor & M. J. Lawrence (2001), "Judgmental time series forecasting using domain knowledge," in J. S.Armstrong (ed.), *Principles of Forecasting*. Norwell, MA: Kluwer Academic Publishers.

Weimann, G. (1990), "The obsession to forecast: Pre-election polls in the Israeli press," *Public Opinion Quarterly*, 54, 396-408.

Zhu, X. N. (2004). Fuzzy clustering model and algorithm for built place of container freight station. *Operations Research and Management Science*, *13* (5), 91-94.

Zimmer, N.R. (1996). Designing intermodal terminals for efficiency. *Transportation Research Circular 459*.

Simon, J. (1985), "Forecasting the long-term trend of raw material availability," *Journal of Forecasting*, 1, 85-109.

Smith, S. K. & T. Sincich (1991), "An empirical analysis of the effect of length of forecast horizon on population forecaterrors," *Demography*, 28, 261-274.

Squire, P. (1988), "Why the 1936 Literary Digest poll failed?" Public Opinion Quarterly, 52, 125-133.

Stewart, T. R. (2001), "Improving reliability of judgmental forecasts," in J. S. Armstrong (ed.), *Principles of Forecasting*. Norwell, MA: Kluwer Academic Publishers.

Tashman, L. J., T. Bakken & J. Buzas (2000), "Effects of regressor forecast error on the variance of regression forecasts," *Journal of Forecasting*, (forthcoming).

Tiegen, K. H. (1983), "Studies in subjective probability III: The unimportance of alternatives," *Scandinavian Journal ofPsychology*, 24, 97-105.

Tull, D. S. (1967), "The relationship of actual and pfuscousicted sales and profits in

new-product introductions," Journal of Business, 40, 233-250.

Wagenaar, W. A., R. Schreuder & A. H. C. Van den Heijden (1985), "Do TV pictures help people to remember the weatherforecast?" *Ergonomics*, 28, 756-772.

Webby, R., M. O'Connor & M. J. Lawrence (2001), "Judgmental time series forecasting using domain knowledge," in J. S.

Armstrong (ed.), *Principles of Forecasting*. Norwell, MA: Kluwer Academic Publishers.

Luthans, F., R. M. Hodgetts & S. A. Rosenkrantz (1988), *Real Managers*. Cambridge, MA: Ballinger.

MacGregor, D. G. (2001), "Decomposition for judgmental forecasting andestimation," in J. S. Armstrong (ed.), *Principles ofForecasting*. Norwell, MA: Kluwer Academic Publishers.

Makridakis, S. (1996), "Forecasting: Its role and value for planning and strategy," *Journal of Forecasting*, 12,513-537.

Allen, P. G. & R. Fildes (2001), "Econometric forecasting," in J. S. Armstrong (ed.), *Principles of Forecasting*. Norwell, MA:Kluwer Academic Publishers.

Arkes, H. R. (2001), "Overconfidence in judgmental forecasting," in J. S. Armstrong (ed.), *Principles of Forecasting*. Norwell,MA: Kluwer Academic Publishers.

Armstrong, J. S. & F. Collopy (2001), "Prediction intervals for extrapolation of annual economic data: Evidence on asymmetry corrections," *Journal of Forecasting* (forthcoming).

Armstrong, J. S. & R. Fildes (1995), "On the selection of error measures for comparison among forecasting methods," *Journal of Forecasting*, 14, 67-71. Full text at hops.wharton.upenn.edu/forecast

Guo, M. (2000) Using GM(1,1) and Verhulst model to pfuscousict building's subsidence,

Geotechnical Engineering World, Vol. 3, No. 10, 33-37. Hsu, C.I., and Wen, Y.U. (1998) Improved Grey prediction models for trans-Pacific air passenger market, *Transp. Plann. Technol*, Vol. 22, 87–107. Li, D.H. (2004) Verhulst model to pfuscousicate ground displacement and deformation. *Coal Science and Technology*, Vol. 32, No. 3, 58-59.

Li, T.B., and Chen, M.D. (1996) Time prediction on landslide using Verhulst inverse-functionmodel, *Journal of Geological Hazards and Environment Preservation*, Vol. 7, No. 3,13-17.

Lu, Y.Q., Wu, K.Z., Wang, T.J., Zhao, C.G. and Yan, G.S. (1995) Grey pfuscousicting the demand of technicians in textile industry, *J. Grey Syst. Theory*, **Vol. 7, No. 1,** 211–214.

Luo, Z.R. (2000) Disease incidence forecast of Lecanosticta acicola with Verhulst model, *Jiangxi Forestry Science and Technology*, No. 4, 15-16.

Mon, D.L., Tzeng, G.H., and Lu, H.C. (1995) Grey decision making in weapon system evaluation, *J. Chung Cheng Inst Technol*, Vol. 24, No. 1, 73–84.

Morita, H., Kase, T., Tamura, Y., and Iwamoto, S. (1996) Interval prediction of annual maximum demand using Grey dynamic model, *Electr. Power Energy Syst*, Vol. 18, No. 7,409–413.

Zhang, F.S., et al. (2003) Application of grey Verhulst model in middle and long term load forecasting, *Power System Technology*, Vol. 27, No. 5, 37-39.

Appendix:

ł	В	С	D	Е	F	G	Н	Ι	J	K	
conta	iner throu	ghput fored	casting of	Dalian po	ort in third	exponent	tial smoot	hing and 1	2 origina	l data	Ľ
		e 1	Ũ			· · ·		0	. 8 .		
		X=	0.55		a .a					100	
rear	number	data	S1	S2	S3	A	В	С	forecast	APE	⊢
1990	1	13.13			13.1259			0			
1991	2		15.41016								L
1992	3		18.89509								
1993	4	25.62	22.59148	20.01425	17.97968	25.71136	0.200182	0.810624	22.75849		
1994	5	30.50	26.9415	23.82424	21.19419	30.54596	0.219992	0.727802	26.72216]
1995	6	37.4	32.69367	28.70243	25.32372	37.29746	0.280196	0.915025	31.49376		1
1996	7	42.1	37.86715	33.74303	29.95434	42.32672	0.250593	0.501086	38.49268		1
1997	8	45.3	41.95522	38.25973	34. 5223	45.60876	0.179725	-0.06265	43.0784]
1998	9	52.6	47.80985	43.5123	39.4668	52.35946	0.248373	0.376528	45.72584]
1999	10	73.6	61.99443	53.67747	47.28267	72.23355	0.66838	2.871374	52.98436]
2000	11	101.1	83.50249	70.08123	59.82188	100.0857	1.086442	4.723342	75.77331]
2001	12	121.7	104.5111	89.01767	75.87957	122.3599	1.084746	3.518475	105.8954]
2002	13	135.2					MAPE		126.9631	0.060924]
2003	14	167					=		138.6033	0.17004]
2004	15	221.2					0.173		157 2804	0.288967	2

Table1.container throughput forecasting of Dalian port in 12 original data

А	В	С	D	E	1
containe	r throughpu	it forecasting o	f Dalian poi	rt in third	2
ex	ponential sr	moothing and 1	2 original d	ata	3
year	number	data	forecast	APE	4
1990	1	13.13	13.91395		5
1991	2	17.28	16.79518		6
1992	3	21.75	20.27304		7
1993	4	25.62	24.47108		8
1994	5	30.50	29.53843		9
1995	6	37.4	35.6551		10
1996	7	42.1	43.03837		11
1997	8	45.3	51.95054		12
1998	9	52.6	62.70819		13
1999	10	73.6	75.69349		14
2000	11	101.1	91.36771		15
2001	12	121.7	110.2877		16
2002	13	135.2	133.1255	0.015344	17
2003	14	167	160.6924	0.03777	18
2004	15	221.2	193.9678	0.123111	19
			MAPE		20
			0.059		21

А	В	С	D	Е	F	G	Н	Ι	J	K	1
cor	ntainer f	hroughnu	t forecasti	ng of Dali	an port in	grev syste	em GM(1	1)and 12	original d	ata	2
001		inougnpu	t loreeusti	iig of Duil	un port m	5109 3930		,	onginar a		3
	number	Х	у	Z	XZ	ZZ	yt	forecast			4
1990	0	13.13					13.1259				5
1991	1	17.28			376.0874	473.7348					6
1992	2	21.75	52.1514	41.2782	897.6522	1703.89	43.67375	16.84916	4.897242		7
1993	3	25.62				4219.711			4.891629		8
1994	4	30.50				8652.255		25.49037	5.010231		9
1995	5	37.4				16120.82		31.35271			10
1996	6	42.1	187.7678	166.7178	7018.819	27794.82	159.8043	38.56329	3.536714		11
1997	7	45.3	233.0678	210.4178	9531.926	44275.65	207.2365	47.43217	-2.13217		12
1998	8	52.6				67271.66			-5.74074		13
1999	9	73.6				103985.5			1.841903		14
2000	10	101.1				167950.6	425.5965	88.26121	12.83879		15
2001	11	121.7	582.0678	521.2178	63432.21	271668	534.1563	108.5597	13.14025		16
	12	568.9419	2522.466	2237.995	169315.3	714116.7	667.6829	133.5266		APE	17
2002	13	135.2	S2=				831.9182	164.2354		0.214759	18
2003	14	167	32.15				1033.925	202.0067	4.3556	0.209621	19
2004	15	221.2					1282.39	248.4647		0.123258	20
		D=	2846661						0.7834	MAPE	21
		Х=	-0.207	W/X=	-46.4382					0.183	22
		W=	9.6127	X ₁ -W/X=	59.56406				C=		23
									0.0244		24

Table2.container throughput forecasting of Dalian port in 6 original data

	В	С	D	E	F	G	Н	Ι	J	K	
contai	ner throug	hput fore	casting of	Qingdao	port in thi	rd expone	ential smo	othing and	d 6 origina	al data	
		X=	0.5								
rear	number	data	S1	S2	S3	А	В	С	forecast	APE	
1998	1	81	81	81	81	81	0	0			
1999	2	103.3	92.15	86.575	83.7875	100.5125	0.783984	2.7875	81		
2000	3	121.3	106.725	96.65	90.21875	120.4438	1.199023	3.64375	104.084		
2001	4	154.2	130.4625	113.5563	101.8875	152.6063	1.875	5.2375	125.2865		
2002	5	212	171.2313	142.3938	122.1406	208.6531	3.143652	8.584375	159.7188		
2003	6	263.9	217.5656	179.9797	151.0602	263.818	3.703247	8.666406	220.3812		
2004	7	341						MAPE	276.1876	0.190066	
2005	8	423.9						=	305.8901	0.278391	
2006	9	514						0.26061	352, 9254	0.313375	Γ

А	В	С	D	E	1							
container	throughpu	t forecastin	g of Qingdao	port in	2							
third e	third exponential smoothing and 6 original data											
year	number	data	forecast	APE	4							
1998	1	81	79.341		5							
1999	2	103.3	100. 580		6							
2000	3	121.3	127.505		7							
2001	4	154.2	161.638		8							
2002	5	212	204.907		9							
2003	6	263.9	259.760		10							
2004	7	341	329.296	0.036	11							
2005	8	423.9	417.447	0.015	12							
2006	9	514	529.195	0.029	13							
				MAPE	14							
				0.027	15							

А	В	С	D	Е	F	G	Н	Ι	J	K	1
C	ntainer th	roughput	forecasting	of Oing	lao nort ir	grey syste	em GM(1	1)and 6 o	riginal dat	ta	2
		nougnput	iorecusting		uo port n	i gicy syst		, i jana o o		lu	3
year	number	Х	у	Z	XZ	ZZ	yt	forecast			4
1998	0	81	81				81	81			5
1999	1	103.3	184.3	132.65	13702.75	17596.02	177.6129	96.61288	6.687117		6
2000	2	121.3	305.6	244.95	29712.44	60000.5	301.5175	123.9046	-2.60462		7
2001	3	154.2	459.8	382.7	59012.34	146459.3	460. 4234	158.9059	-4.70588		8
2002	4	212	671.8	565.8	119949.6	320129.6	664.2179	203.7945	8.205507		9
2003	5	263.9	935.7	803.75	212109.6	646014.1	925.5814	261.3635	2.536516		10
	6	854.7	2557.2	2129.85	434486.7	1190200	1260.776	335.1949		APE	11
2004	7	341	$S_2 =$				1690.659	429.8826		0.260653	12
2005	8	423.9	59.41				2241.977	551.3182		0.300585	13
2006	9	514					2949.035	707.0576	S1=	0.375598	14
		D=	1414737						5.0385	MAPE	15
		Х=	-0.2488	W/X=	-261.01				C=	0.312279	16
		W=	64.9393	$X_1 - W/X =$	342.01				0.0848		17

		U	1		U	U	1		U		
1	В	С	D	Е	F	G	Н	T	T	K	Γ
	-	1 . 0				-		a : 1	10	1.1.	
contain	er throug	hput fore	casting of	NingBo p	oort in thii	d exponent	ntial smoc	othing and	12 origin	al data	
		X=	0.55								
	number	data	51 S1	S2	S3	٨	В	C	forecast		
	number			2. 2098		2. 2098	D 0	0	Torecast		-
1990	1	2.21	2.2098				-	0			-
1991	2	3.56				3.440053					-
1992	3		4.258176				0.069544				
1993	4					7.815703					
1994	5	12.51	9.696139	7.593384	6.033644	12.34191	0.176449	0.811171	8.419019		1
1995	6	16	13.16326	10.65682	8.576389	16.09573	0.181371	0.636397	13.32953		1
1996	7					20, 25804			16.91349		1
1997	8	25.7		18.36382		25.65112			20.97875		1
1998	9		29.22503			34.95233			26. 4973		1
											_
1999	10					58.65414					1
2000	11	90.2				89.35698			63.3828		1
2001	12	121.3	98.39627	78.90662	62.9315	121.4004	1.436727	5.250091	96.03411	APE	1
2002	13	185.9						MAPE	128.0873	0.310988	1
2003	14	277.2						=	145.2743	0.475923	1
2004	15	400.5						0.451682	172.9614	0.568136	2
8001	10	10010						01101001	11010011	0.000100	<u> </u>
<u> </u>	D	С	D	Б	1						-
1 I	U		<u>ν</u>	L. D.						┣───┤	⊢
container	through	put forec	asting of	NingBo p	2						-
			ļ	ļ	3						⊢
	number	data	forecast	APE	4						
1990	1	2.21	2.550889		5						L
1991	2	3.56	3.618436		6						
1992	3	5.33	5.132751		7						
1993	4	7.88	7. 280807		8						t
			10. 32783		9						-
1994	5	12.51			-						-
1995	6	16	14.65002		10						
1996	7	20.2	20.78106		11						
1997	8	25.7	29.47793		12						
1998	9	35.3	41.81444		13						
1999	10	60.1	59.31379		14	1	1				
2000	11		84.13661		15						
2000	12		119.3478		16						
				0.000							-
2002	13		169.2948	0.089	17						-
2003	14		240.1447	0.134	18					ļ	_
2004	15	400.5	340.6453	0.149	19						
				MAPE	20						
				0.124	21						
A 1	B	С	D	F	F	G	Н	T	T	К	
container	through	put forec	asting of	NingBo n	ort in gr	rey system	n GM(1 1)	and 12 or	iginal dat	ta	
Johnamer	un ough	but idice				by by b c c l	1 0/1 (1, 1/0				t t
toor	number	v	v	<i>a</i>	¥7		vt	forecast		<u>├</u> ───┤	ا ا
		A 0.01	y 0.0000	4	XZ	ZZ				┝───┤	ť
1990	0	2.21	2.2098	0			2.2098				⊢
1991	1	3.56	5.7732			15.93207		2.401488			
1992	2	5.33	11.0982	8.4357		71.16103			1.888		
1993	3	7.88	18.983	15.0406	118.5921	226.2196	12.96584	4.917934	2.967		
1994	4	12.51	31.4964	25.2397	315.8345	637.0425	20.00359	7.037749	5.476		
1995	5					1559.966					1
1996	6	20.2				3317.345			5.788		1
										<u> </u>	
1997	7	25.7				6487.723				├ ──┤	1
1998	8		128.6964		3919.938		94.62665		5.785	<u> </u>	1
	9		188.7964			25200.42			17.863		1
1999	10	90.2	278.9964	233.8964	21097.46	54707.53	197.3056	60.44225	29.758		1
1999 2000		121.3	400.2964			115359.7			34.805		1
2000	11					219914.3		123.7779		APE	1
		398, 0866			20110.10			177.1308		0.047	1
2000 2001	12							111111000		0.011	<u> </u>
2000 2001 2002	12 13	185.9	S2=							0 000	1
2000 2001 2002 2003	12 13 14	185.9 277.2	S2= 36. 79				838.1903	253.4809	01	0.086	-
2000 2001 2002	12 13	185.9 277.2 400.5	S2= 36. 79				838.1903			0.094	1
2000 2001 2002 2003	12 13 14	185.9 277.2 400.5 D=	S2= 36.79 1266264				838.1903	253.4809	1.905		2 2
2000 2001 2002 2003	12 13 14	185.9 277.2 400.5	S2= 36. 79	W/X=	-3. 36161		838.1903	253.4809		0.094	2

Table3.container throughput forecasting of Ningbo port in 12 original data

		Х=	0.6							
year	number	data	S1	S2	S3	a	b	с	forecast	APE
1998	1	20.2	20.2	20.2	20.2	20.2	-3. 41061E-16	0		
1999	2	25.7	23.5	22.18	21.388	25.348	0.1064448	1.188	20.200	
2000	3	35.3	30.58			34.9672	0.23749632	2.311	26.642	
2001	4	60.1	48.292	39.8632	33.8728	59.1592	0.58116096	5.486	37.516	
2002	5	90.2	73.4368	60.00736	49.55354	89.84186	0.829915546	6.695	65.227	
2003	6	121.3	102.1547	85.29578	70.99888	121.5757	0.917935718	5.765	97.367	
2004	7	185.9						MAPE	128.258	0.310069
2005	8	277.2						=	146.470	0.471609
2006	9	400.5						0.447	176.211	0.560022
year	number	data	forecast	APE	MAPE					
1998	1	20.2	18.56813		0.041					
1999	2	25.7	27.12203							
2000	3	35.3	39.61653							
2001	4	60.1	57.86695							
2002	5	90.2	84.52492							
2003	6	121.3	123.4636							
2004	7	185.9	180.3404	0.031						
2005	8	277.2	263.4191	0.052						
2006	9	400.5	384.7703	0.041						
year	number	х	y	Z	XZ	ZZ	yt	forecast		
1998	0	81	81				81	81		
1999	1	103.3	184.3	132.65	13702.75	17596.02	177.612883	96.61288	6.68711699	
2000	2	121.3	305.6	244.95	29712.44	60000.5	301. 5175056	123.9046	-2.6046226	
2001	3	154.2	459.8	382.7	59012.34	146459.3	460. 4233887	158.9059	-4.7058831	
2002	4	212	671.8	565.8	119949.6	320129.6	664.2178813	203.7945	8.20550741	
2003	5	263.9			212109.6	646014.1	925. 5813651	261.3635	2.53651618	
	6	854.7	2557.2		434486.7		1260.776246			APE
2004	7						1690.658824	429.8826		0.261
2005	8	423.9	59.41				2241.977001		2.024	0.301
2006							2949.034575			0.376
			1414737						5.039	MAPE
			-0.2488		-261.01					0.312
			64.9393		342.01				C=	
									0.085	

Table4.container throughput forecasting of Ningbo port in 6 original data

Δ	В	C	D	E	F	G	Н	Т	T	K
n .	-		-	-	р 	-		11 1 · · · · · ·	J	K
conta	ainer throu	ughput fore	ecasting of	f FuZhou p	ort in thir	d exponen	tial smoot	hing and 1	2 original	data
		X=	0.3							
year	number	data	S1	S2	S3	a	b	с	forecast	APE
1990	1	2.91	2.9103	2.9103	2.9103	2.9103	0	0		
1991	2	3.68		2.979798			0.04255	0.020849	2.9103	
1992	3	4.57	3.569052	3.156574		4.23621				
1993	4	7.67	4.798316	3.649097		6.641531	0.276382	0.127469	4.383461	
1994	5	10.39	6.477231	4.497537	3.584972	9.524055	0.446856	0.196003	7.045382	
1995	6	15.1	9.064062	5.867495	4.269729	13.85943	0.693214	0.293657	10.16691	
1996	7	17.7	11.65484	7.603699	5.26992	17.42335	0.808164	0.315434	14.8463	
1997	8	22.5	14.90839	9.795107	6.627476	21.96733	0.969474	0.357365	18.54695	
1998	9	25.2			8.315834	25.53744			23.29417	
1999	10	31.8	22.13711	15.21987	10.38704	31.13877	1.186719	0.382852	26.86931	
2000	11	40	27.49598			38.72157		0.483487	32.70834	
2001	12	41.8	31.78718	22.76805	15.88963	42.94705	1.415833	0.393194	40.68908	
2002	13	48.2						MAPE	44.75607	0.07145
2003	14	59.8						=		0.208169
2004	15	70.8						0.188	50.7333	0.283428
1	В	С	D	E	1					
container	throughp	ut foreca	sting of H	'uZhou por	2					
			2	100	3					
year	number	data	forecast	APE	4					
1990	1	2.91	3.284905		5					
1991	2	3.68	4.236925		6					
1992	3	4.57	5.464855		7					
1993	4	7.67 10.39	7.048661		8					
1994 1995	5	10.39	9.09148 11.72634		9					
1995	7	15.1	15. 12483		10					
1996	8	22.5	15.12483		11					
1997	9	25.2	25. 16207		12					
1999	10	31.8	32.45445		13					
2000	11	40			15					
2000	12	41.8			16					
2001	13	48.2	69.6399	0.444811	17					
2002	14	59.8	89.82269		18					
2008	15	70.8	115.8548		10					
8001	10	1010	110,0010	MAPE	20					
				0. 528	21					
ł	В	С	D	Е	F	G	Н	T	T	К
container	throughp	out foreca	sting of H	FuZhou por	t in grey	system G	M(1,1)and	12 origin	al data	
year	number	х	у	Z	XZ	ZZ	yt	forecast		
1990	0	2.91	2.9103				2.9103	2.9103		
1991	1	3.68	6.5928	4.75155	17.49758	22. 57723	9.55644	6.64614	-2.96364	
1992	2	4.57	11.1584	8.8756	40.52244	78.77628	17.6773		-3.55526	
1993	3	7.67	18.825			224.7511	27.60011	9.92281	-2.25621	
1994	4	10.39	29.2197			577.0733		12.1246		
1995	5	15.1	44.3197	36.7697	555.2225	1352.011	54.53965	14.81494		
1996	6	17.7	62.0197	53.1697	941.1037	2827.017	72.6419	18.10225	-0.40225	
1997	7	22.5	84.5197	73.2697	1648.568	5368.449				
1998	8	25.2	109.7197				121.7879	27.027	-1.827	
1999	9			125.6197						
2000	10			161.5197					-0.35181	
2001	11		223. 3197		8461.143		244.4693		-7.50553	
	12		912.7338	802.5291	24931.61	102725.5	304.7153			APE
2002	13	48.2					378.3293			0.52726
	1.4	59.8	12.88	1			468.2777	89.9484		0.50415
2003	14									
	14	70.8					578.1849	109.9072		
2003		70.8 D=	485928.1				578.1849	109.9072	1.3189	
2003		70.8	485928.1 -0.2004		-27.0419 29.95222		578.1849	109.9072		

Table5.container throughput forecasting of Fuzhou port in 12 original data

		Х=	0.35							
year	number	data	S1	S2	S3	А	В	С	forecast	APE
1998	1	17.7	17.7	17.7	17.7	17.7	0	0		
1999	2	22.5	19.38	18.288	17.9058	21.1818	0.25978	0.2058	17.7	
2000	3	25.2	21.417	19.38315	18. 42287	24.52442	0.429654	0.311272	21.64738	
2001	4	31.8	25.05105	21.36692	19.45329	30.50569	0.74029	0.513342	25.26535	
2002	5	40	30.28318	24.48761	21.2153	38.60202	1.107427	0.731598	31.75932	
2003	6	41.8	34.31407	27.92687	23.56435	42.72595	1.055544	0.587037	40.44105	
2004	7	48.2						MAPE	44.36853	0.079491
2005	8	59.8						=	47.18518	0.21095
2006	9	70.8						0. 189	51.17591	0.277176
		year	number	data	forecast	APE	MAPE			
		1998	1	17.7	18.21711		0.074787			
		1999	2	22.5	21.7815					
		2000	3	25.2	26.04331					
		2001	4	31.8	31.139					
		2002	5	40	37.23172					
		2003	6	41.8	44.51655					
		2004	7	48.2	53. 22675	0.09444				
		2005	8	59.8	63.6412	0.060357				
		2006	9	70.8	76.09336	0.069564				
year	number	х	у	Z	XZ	ZZ	yt	forecast		
1998	0	17.7	17.7				17.7	17.7		
1999	1	22.5	40.2	28.95	651.375	838.1025	40.31953	22.61953	-0.11953	
2000	2	25.2	65.4	52.8	1330.56	2787.84	66.95686	26.63733	-1. 43733	
2001	3	31.8	97.2	81.3	2585.34	6609.69	98.32566	31.3688	0.431203	
2002	4	40	137.2	117.2	4688	13735.84	135.2663	36.94069	3.059309	
2003	5	41.8	179	158.1	6608.58	24995.61	178.7686	43.50229	-1.70229	
	6	161.3	519	438.35	15863.86	48967.08	229.998	51.2294		APE
2004	7	48.2					290. 3271	60.32905		0.25164
2005	8	59.8	7.7				361.3721	71.04501		0.188044
2006	9	70.8					445.0365	83.66441		0.181701
			52684.69						1.7037	MAPE
			-0.1635		-109.644				C=	0.207
			17.9268		127.344				0.2213	

Table6.container throughput forecasting of Fuzhou port in 6 original data

contain	er throug	hnut fore	easting of C	uano 7ho	1 nort in th	ird expone	ntial smoo	thing and	12 origin	al data
contain	er unoug			luangzho	u port in u	inu expone		and	12 Origin	ai uata
		X=	0.45							
	number	data	S1	S2	S3	a	b	с	forecast	APE
1990	1	11.02	11.0204	11.0204		11.0204		0	11 0004	
1991	2	16.19							11.0204	
1992 1993	3		15.457798 16.943204							
		22.07				21. 982621			18.77536 19.62318	
1994 1995	<u>5</u> 6	22.07 51.5				47.072262		2. 726124	22. 53563	
1995	7	55.8	43. 679495						51. 22448	
1990	8	68.7	43.079493 54.938722	42. 95207				1. 621984	60. 46609	
1998	9	84.1	68.061297					1. 563443	72. 30476	
1999	10	117.7	90.398714	70 51759	55 26008	114.90344				
2000	10		114.11429			142.88885			120.321	
2001	12		140. 97286						148.76	
2002	13	217.3	110101200	1101 0120	00.00000	110110110	1.001110	MAPE	179.9574	0.1718
2003	14	276.9						=	192.6177	
2004	15	330.4						0.278	211.7421	
	B	C	D	Е	1					
ntainer th	roughput	forecasting	of GuangZho	u port in th	2					1
			<u> </u>		3					
ar	number	data	forecast	APE	4					
1990	1	11.02	10.772159		5					
1991	2	16.19	13.956773		6					
1992	3	18.04	18.082867		7					
1993	4	18.76	23. 428773		8					
1994	5	22.07	30.355111		9					
1995	6	51.5	39.329108		10					
1996	7	55.8	50.956121		11					
1997	8	68.7	66.020473		12					
1998	9	84.1	85.538357		13					
1999	10	117.7	110.82639		14					
2000	11		143. 59041		15					
2001	12		186.04059		16					
2002	13	217.3			17					
2003	14	276.9	312.3002	0.127845	18					
2004	15	330.4	404.62669		19					
				MAPE=	20					
		0	5	0. 154	21	0		T	*	**
	B	C	D	上 71	F	G	H	1 10 .	J	K
ntainer	throughp	out foreca	isting of G	uangZhou	port in g	rey system	GM(1, 1)ai	nd 12 orig	ginal data	a
	1							C		
ar 1990	number 0	x 11.02	y 11. 0204	Z	XZ	ZZ	yt 11.0204	forecast 11.0204		
1990	1	16.19		19.11295	300 345	365.30486			-0. 51063	
1991	2	18.04				1312. 3122				
1992	3	18.04				2983. 9507				
1993	4	22.07				5631.0091				
1995	5	51.5		111.8252		12504.875				
1995	6	55.8		165. 4752		27382.042				
1997	7	68.7	262.0752			51858.767		71. 44678		
1998	8	84.1	346. 1752					91.0358	-6. 9358	
1999	9	117.7	463. 8752	405.0252		164045.41		115. 9957		
2000	10	143.1	606. 9752							
2000	10	173.8	780. 7752	693.8752		481462.79		188. 3219		
2001	12	769.7548		2628.481		1126718.7		239. 9553		APE
2002	13	217.3		2020, 101	501111.4	*180110.1		305.7454		0.407
2002	13	276.9	51.92				1760.587	389. 5736		0.4069
2003	15	330.4	51.52				2256.972	496. 3855	S1=	0.5023
	10	D=	5484994.9						6.837	
		X=	-0. 2423		-49.8737				C=	0.43
		Λ^{-}	-0. 242.0							

Table7.container throughput forecasting of Guangzhou port in 12 original data

		X=	0.6							
year	number	data	S1	S2	S3	А	В	С	forecast	APE
1998	1	55.8	55.8	55.8	55.8	55.8	6.82E-16	0		
1999	2	68.7	63.54	60.444	58.5864	67.8744	0.249661	2.7864	55.8	
2000	3	84.1	75.876	69.7032	65.25648	83.77488	0. 41931	3.88368	70.91046	
2001	4	117.7	100.9704	88.46352	79.1807	116.7013	0.820725	7.254144	88.07787	
2002	5	143.1	126.2482	111.1343	98.35286	143.6944	0.826675	5.247936	124.7762	
2003	6	173.8	154.7793	137.3213	121.7339	174.1079	0.867924	4.20889	149.769	
2004	7	217.3						MAPE		0.175404
2005	8	276.9						=	192.6793	0.304156
2006	9	330.4						0.27669	214. 5916	0.35051
year	number	data	forecast	APE	MAPE					
1998	1	55.8	55.06438		0.048795					
1999	2	68.7	69.63749							
2000	3	84.1	88.06745							
2001	4	117.7	111.375							
2002	5	143.1	140.8511							
2003	6	173.8	178.1281							
2004	7	217.3	225.2708	0.035383						
2005		276.9		0.028046						
2006	9	330.4	360.2878	0.082955						
year	number	х	у	Z	XZ	ZZ	yt	forecast		
1998	0	55.8	55.8				55.8	55.8		
1999	1	68.7	124.5	90.15	6193.305	8127.023	126.0785	70.27854	-1.57854	
2000	2	84.1	208.6				214.4427			
2001	3	117.7	326.3	267.45	31478.87	71529.5	325.5467	111.104	6.596027	
2002	4	143.1	469.4	397.85	56932.34	158284.6	465.2424	139.6957	3.404304	
2003	5	173.8	643.2				640.8876		-1.84527	
	6	587.4	1772	1478.3	205296.3	575149.7	861.7338	220.8462		APE
2004	7	217.3					1139.413	277.6792		0.277861
2005	8	276.9					1488.551	349.1377	0.4625	0.26088
2006	9	330.4					1927.536	438.9855		0.328649
			690377.8						3. 9524	MAPE
			-0.229		-217.294				C=	0.289
			49.7603		273.0939				0.1033	

Table8.container throughput forecasting of Guangzhou port in 6 original data

	В	С	D	Е	F	G	Н	Ι	J	K
contain	er through	mut forec	acting of 1	VanTong	nort in thi	rd evnone	ntial emo	othing and	1 12 origin	nal data
contain	er tillougi	iput iorec	asting of I	van rong	port in thi	ru expone	intial shio	ouning and	1 12 origi	iai uata
		Х=	0.2							
ear	number	data	S1	S2	S3	a	b	с	forecast	APE
1990	1	1.09	1.0907	1.0907	1.0907	1.0907	0	0		
1991	2	2.00		1.127068		1.53439	0.04022	0.007274	1.0907	
1992	3	3.00	1.618952	1.225445	1.123468	2.303989	0.103732	0.018221	1.581883	
1993	4					3.584831		0.034917		
1994	5	6.59	3.098653	1.76015	1.299133	5.314643	0.328004	0.054843	3.823268	
1995	6					7.390742				
1996	7					8.921221			7,929629	
1997	8	12.2		3.604463			0.646737			
1998	9					12.91212				
1999	10		9.481991			15.21403				
2000	11					17.67972				
2000	12					19.15299				
2002	13	20.5	12.00011	1.021101	1.001020	10.10200	0.000011	MAPE	20. 11272	0.018895
2002	13	20. 3						=	21. 27989	
2003		24.7						0 122667	22.65451	
2004	B	C 20. 1	D	E	1			0.122001	22. UUTUI	5. 21004
ontainer t	throughput			g nort in th	1					
-munici	l	10100ustillg	511,01101	S POIL III II	2					
ear	number	data	forecast	ΔPF	4					
<u>ear</u> 1990	1901101	1.09	0. 9357	M E	5					
1990	2	2.00	2. 160879							
1991	3	3.00	3. 525823		7					
1992	4	4.65	4. 99027		8					
	-				9					
1994	5	6.59	6.533455		-					
1995	6	8.7	8.142434		10					
1996	7	9.3	9.808272		11					
1997	8	12.2	11.52439		12					
1998	9	13	13.2857		13					
1999	10		15.08817		14					
2000	11		16.92849		15					
2001	12	18.4			16					
2002	13		20.71206		17					
2003	14		22.65094		18					
2004	15	28.7	24.6188	0.142202	19					
				MAPE=	20					
				0.078501	21					
	В	С	D	E	F	G	Н	Ι	J	K
ontaine	r through	put forec	asting of	NanTong	port in g	rey syste	em GM(1,1)	and 12 of	riginal d	ata
	ļ									
ear	number	Х	у	Z	XZ	ZZ	yt	forecast		
1990	0	1.09	1.0907				1.0907			
1991	1	2.00	3.0906			4.370817		4.19064		
1992	2	3.00	6.0952			21.09473				
1993	3	4.65	10.7486						-1.16749	
1994	4	6.59				197.2213				
1995	5	8.7	26.0385			470.391				
1996		9.3	35.3385			941.784				
1997	7	12.2				1717.149				
1998	8	13		54.0385		2920.159	64.98288	13.23617	-0.23617	
1999	9	15.8				4683.828		15.59973		
2000		18.2			1554.981				-0.18534	
2001	11	18.4				10761.68		21.66837		
2001	12		490. 5424		6376.958			25. 53764		APE
2002	13	20.5						30.09784		0.468188
2002	13	20.3						35. 47235		0. 436128
2003	14	24.7	5.30					41.80657	S1=	0. 45667
2004	10	 D=	131078.5				200,0007	11.00001	1.0448	
		ν^{-}	19101010							
		Х=	-0.1643	w/v-	-22.3774				C=	0.453663

Table9.container throughput forecasting of Nantong port in 12 original data

	-		1	1	1	1	1	1	1	1
		X=	0.3	~ ~	~ ~				-	
year	number	data	S1	S2	S3	a	b	С	forecast	APE
1998	1	9.3		9.3			-2.6E-16			
1999	2	12.2		9.561	9.3783		0.159799			
2000	3	13				12.62613				
2001	4	15.8				15.07078				
2002	5		14.17731			17.70025			15.61759	
2003	6			12.87056	11.19095	18.91164	0.468508			
2004	7	20.5						MAPE	19.54434	
2005	8							=	20.50544	
2006	9							0.152344	21.79493	0.24059
year	number	data	forecast	APE	MAPE					
1998	1	9.3	9.7476		0.085041					
1999	2	12.2	11.6419							
2000	3	13	13.5362							
2001	4	15.8	15.4305							
2002	5	18.2	17.3248							
2003	6	18.4	19.2191							
2004	7	20.5	21.1134	0.029053						
2005	8	24.7	23.0077	0.073554						
2006	9	28.7	24.902	0.152518						
year	number	Х	у	Z	XZ	ZZ	yt	forecast		
1998	0	9.3	9.3				9.3	9.3		
1999	1	12.2	21.5	15.4	187.88	237.16	21.55404	12.25404	-0.05404	
2000	2	13	34.5	28	364	784	35.25486	13.70082	-0.70082	
2001	3	15.8	50.3	42.4	669.92	1797.76	50.57327	15.31841	0.481586	
2002	4	18.2	68.5	59.4	1081.08	3528.36	67.70027	17.12699	1.073009	
2003	5	18.4	86.9	77.7	1429.68	6037.29	86.84936	19.1491	-0.7491	
	6	77.6	261.7	222.9	3732.56	12384.57				APE
2004	7	20.5						23.93772		0.16769
2005	8	24.7	2.57				158.961	26.76395	0.0101	0.08356
2006	9	28.7						29.92385		0.04264
			12238.44						0.6983	
			-0.1116		-94. 4901					0.09796
			10.5451		103.7901				C=	
									0.2717	

Table10.container throughput forecasting of Nantong port in 6 original data