World Maritime University

The Maritime Commons: Digital Repository of the World Maritime University

World Maritime University Dissertations

Dissertations

2016

Analysis of productivity in dredging project A case study in Port of Tanjung Perak Surabaya – Indonesia

Tiggi P. Hardya World Maritime University

Follow this and additional works at: https://commons.wmu.se/all_dissertations

This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact library@wmu.se.

WORLD MARITIME UNIVERSITY

Malmö, Sweden

ANALYSIS OF PRODUCTIVITY IN DREDGING PROJECT

A case study in Port of Tanjung Perak

Surabaya - Indonesia

By

TIGGI PERKASA HARDYA

Indonesia

A dissertation submitted to the World Maritime University in partial Fulfillment of the requirements for the award of the degree of

MASTER OF SCIENCE

In

MARITIME AFFAIRS

(PORT MANAGEMENT)

2016

DECLARATION

I certify that all the material in this dissertation that is not my own work has been identified, and that no material is included for which a degree has previously been conferred on me.

The contents of this dissertation reflect my own personal views, and are not necessarily endorsed by the University.

(Signature):

(Date):

Supervised by: Professor Devinder Grewal, MS.c., Ph.D

World Maritime University

Assessor: Professor Michael Ircha, MPI., MPA., Ph.D

Institution/organisation: University of New Brunswick

ACKNOWLEDGMENTS

All praise and thanks are due to the Allah, the Almighty, the greatest of all, on whom ultimately we depend for sustenance and guidance. I would like to thank Almighty Allah for giving me opportunity, determination and strength to do my dissertation. His continuous grace and mercy was with me throughout my life and ever more during the tenure of my dissertation.

First and foremost I would like to thank and express my deep and sincere gratitude to my supervisor Professor Devinder Grewal Msc., Ph.D for his incessant support, encouragement and the guidance in the supervision of this dissertation. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly.

I would like also to convey my sincere thanks to Indonesia Port Corporation III (IPC III), especially to Mr Djarwo Surjanto (Former CEO of IPC III) and Mr Toto Heli Yanto (Human Capital and General Affair Director of IPC III) for sponsoring my studies here at World Maritime University. I must express my gratitude to Mr Margo Marsono (Former Senior Manager of Education and Training of IPC III), for giving me the excellent opportunity to continuing education to a higher level.

I would like to present my sincere thankfulness to my dear mother Dya Rintara and my deceased father Ir. Hardoyo Notobudoyo, who had passed away since a long time (I miss you dad), for their great role in my life and their numerous sacrifices for me and for my brothers. I warmly thank and appreciate my mother and father-in law (Drs. Titin Supriatin and Drs. Gaguk Supriyanto, MSi).

I also appreciate the support of non-teaching faculty members of World Maritime University for all the things that facilitated smooth work of my dissertation, especially to Ms Lyndell Lundahl, Ms Anna Volkova, and Mr Crish Hoebeke. Further, I would like to extend my special thanks to:

- 1. Ms. Inger Battista, Ms. Anne Pazaver and Ms. Michele Galliford for the support in giving linguistic advice;
- 2. Mr. Agus Mardaly (WMU Ph.D Candidate) and his family, for all the help, the attention, the advice and encouragement to complete a dissertation well;
- Sokhdara SREY, Phicheyrithy SICH, Abdulhadi Embaia, Praveen Kumar Prabhala, and Gabriel Damilola, for the friendship, the meaningful discussion and conversation during our course at World Maritime University;
- 4. The Indonesian S16 students; Wardhani Pudji Rahmanto, Anwar Siregar, Nyoman Kajeng Sadnyana Putra, Achmad Noor Riduansyah, Aries Budhiman, Afif Amrullah, Syafiuddin, for the encouragement and support during process of writing this dissertation and also for the great time we had at World Maritime University;
- All of the Indonesian S15, for the continues support during my studies here and share their valuable experiences. All of the Indonesian S17 students, for share the joy and pleasure;
- 6. All of the S16 students at World Maritime University, especially Port Management Specialization, for the great time we had during our course;
- Mr. Danurwarsa, Mas Anton Laksmita, Mas Rudy Arbai, and Gus Yuliatmono Iffansyah Achmad, for the support and encouragement to pursue this degree. Anam Maritiem and Hafizhuddin Satriyo W, for supporting the dissertation data collection;
- 8. DR. Bertha Retno Sari MMRS, Tirta and Terry, Mas Robby and Ita, and Dek Nia, for the support and inspiration;

Last but not least, I would like also to extend my special thanks to my beloved wife, Ratna Dewi Ekasari, and my lovely daughters Afiyah Kamila Putri and Adzkia Nadhifa Putri, for their patience and great support during my absence.

"The two most important days in your life are the day you are born and the day you find out why." -Mark Twain-

ABSTRACT

Title of Dissertation:ANALYSIS OF PRODUCTIVITY IN DREDGING
PROJECT; A CASE STUDY IN PORT OF TANJUNG
PERAK SURABAYA - INDONESIA.Degree:MSc

This dissertation is an assessment of the real productivity theory of a dredging project conducted in the port of Tanjung Perak Indonesia. The project was conducted in July 2012 and completed in December 2012 by Rukindo Corporation under the contract from the Indonesian Port Corporation III.

The assessment will analyse the gap between the proposed productivity of the dredgers by the contractor with the real productivity after the completion of the project that has taken into account the aspects that cause the delay of the project. It will combine the data from the literature reviews on the dredging operation with the actual data of the daily and weekly project report.

The researcher found that there is a difference of calculation of the productivity from the contractor with the actual productivity using the real productivity theory approach. The project productivity was influenced by several variable ranging from characteristics of the dredger to several project management issues. Several solutions will be proposed to accelerate the project and avoid the potential delay. The solution includes the usage of the TSHD 1000, TSHD 2900, TSHD 4000, TSHD 5000, grab clamshell 5.5 and grab clamshell 20.

The finding will seek to improve the planning of the dredging project in Indonesia Port Corporation III and in other cases where applicable.

KEYWORDS: *Productivity Analysis, Dredging Operations, Real productivity theory, Indonesian Port Corporation III.*

Tables of Contents

1. In	troduction	8
1.1.	Background	8
1.2.	Current condition of the port traffic	8
1.3.	Aim and Objectives of the research.	13
1.	3.1. Aim of the research	13
1	3.2. Objectives of the research	14
1.4.	Methodology	14
1.5.	Limitations of the Research	15
1.6.	Structure of the Research	15
2. G	eographical and business condition of the Port of Tanjung Perak	17
2.1.	Background	17
2.2.	Dredging contractual terms and conditions	19
2.1.	Sedimentation	20
2.2.	Productivity issues	21
2.3.	Administrative delays	21
2.4.	Management issues	21
2.5.	Shipping Channel	22
2.6.	Port water area	22
2.7.	Port pilotage	23
2.8.	Current, Wave and Wind	24
3. Li	terature of Dredging Project	27
3.1.	Project Definition	27
3.2.	Dredging Project Definition	27
3.2	2.1. Common Factors that affect the dredging project	28
3.2	2.2. Stages of The Dredging Planning	29
3.3.	Dredging Equipment	32
3.	3.1. Trailing suction hopper dredgers (TSHD)	34

3.3.2.	Estimation production of TSHD	
3.3.3.	Grab Dredger / Clamshell	41
3.3.4.	Estimation production of grab clamshell	45
3.4. Du	ration of the project	49
3.5. Dre	edging Cost Estimation	49
3.5.1.	Operating Cost	50
3.5.2.	Mobilization and Demobilization	50
3.5.3.	Crew and Labor	50
3.5.4.	Fuel and Lubricants	51
3.5.5.	Maintenance and Repair	51
3.5.6.	Depreciation, Insurance, Overhead, Bonding and Profit	51
3.5.7.	Additional Costs	52
		50
4. Data pr	ocessing and analysis	
4.1. An	alysis of the Dredgers Productivity	
4.2. Ka	limantan II	
4.2.1.	Loading time	59
4.2.2.	Sailing time	59
4.2.3.	Discharging time	59
4.2.4.	Delay time	60
4.2.5.	Delay factor	60
4.2.6.	Operational factor	60
4.2.7.	Mechanical breakdown factor	60
4.2.8.	Maximum potential productivity	61
4.2.9.	Real productivity	61
4.2.10.	Achievement of the project duration by the existing TSHD	63
4.2.11.	Productivity of other alternative TSHD	65
4.2.12.	Delay factor Information of TSHD	71
4.3. Toi	ndano	72
4.3.1.	Productive Unit	
4.3.2.	Modification Factor	

	4.3.3.	Nominal uninterrupted output	75
	4.3.4.	Delay Factor	76
	4.3.5.	Maximum potential productivity	77
	4.3.6.	Real productivity	78
	4.3.7.	Achievement of the project duration by the existing Clamshell	79
	4.3.8.	Productivity of another alternative Clamshell	81
	4.3.9.	Productivity of Danau Laut Tawar	81
	4.3.10	Delay factor Information of Grab Clamshell	86
5.	Estim	ated cost of the dredging project	87
6.	Conc	usion and Recommendation	89
6	б.1. Т	railing Suction Hopper Dredger	
6	6.2. G	rab Clamshell Dredger	90
AP	PEND	IX A :	

References	117
ESTIMATION	109
TRAILING SUCTION HOPPER DREDGE AND GRAB CLAMSHELL COST	
APPENDIX B :	
PRODUCTION	. 92
TRAILING SUCTION HOPPER DREDGER AND GRAB CLAMSHELL	

List of Tables

Table 1. S	hip traffic based on type shipping and distribution	9
Table 2. S	hip traffic by type of ships	10
Table 3. T	The influx of goods based on the trade and distribution	10
Table 4. F	low goods based packaging and distribution	11
Table 5. C	Container Flows	12
Table 6. T	The flow of passengers	13
Table 7. T	The flow of animal	13
Table 8. I	Depth design of port basin	26
Table 9.	Bulking factor, B, for various soil	39
	types when excavated by mechanical dredger	39
Table 10.	Operational factor, fo for given personal ratings	
	(valid for good climate)	41
Table 11.	Relationship between the type of	
	grab bucket crane with dredged soil types	45
Table 12.	Grab dredger, modification factor, f _m ,	46
	for various soil types and bucket sizes	46
Table 13.	Summary of the grab clamshell, variety of bucket fill factor, f_m	49
Table 14.	List of specification dredger types TSHD owned by PT Rukindo	53
Table 15.	List of specification dredger types clamshell owned by PT Rukindo	53

Table 16. List of specification dredger types cutter suction	
owned by PT Rukindo	54
Table 17. Auxiliary ship for dredgers owned by PT Rukindo	54
Table 18. Predominant Soil Type	54
Table 19. Shear capacity for soil types	55
Table 20. Estimates TSHD dredging cycle per day	56
(based on estimated contractors)	56
Table 21. Summary of work time dredging projects by Kalimantan II	59
Table 22. Data entry section for Kalimantan II productivity	63
Table 23. Comparisons of estimates production capacity	65
Table 24. Comparisonss of estimated production capacity	66
Table 25. Estimates of other alternative TSHD production capacity	68
Table 26. Factors causing delays	71
Table 27. Estimates grab clamshell dredging cycle per day (based on estimated	
contractors)	72
Table 28. Summary progress of productivity Tondano	74
Table 29. Data entry section for Tondano productivity	79
Table 30. Comparisons of estimates production capacity	80
Table 31. Factors causing delays	86
Table 32. The estimated cost of dredging alternatives	87

Table A-1. Project site information used in estimate dredger productivity	92
Table A-2. Summary of the Project calculation dredged by TSHD	94
Table A-3. Summary of the project calculation Dredged	95
Table A-4. Comparison of alternative productivity	95
Table A-5. Analysis for accelerating achievement of the project by TSHD	96
Table A-6. Summary of the project calculation dredged by clamshell	99
Table A-7. Analysis for accelerating achievement of the project by clamshell	100
Table A-8. Summary of daily reports for time delays project of TSHD	102
Table A-8. Continued	103
Table A-8. Continued	104
Table A-8. Continued	105
Table A-8. Continued	106
Table A-9. Results of laboratory test for the type of soil	
in the dredging project	107
Table A-10. Results of laboratory test for the concentration of silt	108
Table B-1. Results of laboratory test for the concentration of silt	109
Table B-1. Continued	110
Table B-1. Continued	111
Table B-2. Results of laboratory test for the concentration of silt	112
Table B-2. Continued	113

Table B-2. Continued	114
Table B-3. Analysis unit price of dredging by TSHD	114
Table B-4. Analysis unit price of dredging by Clamshell	115
Table B-5. The estimated cost of mobilization/demobilization by TSHD	115
Table B-6. The estimated cost of mobilization/demobilization by Clamshell	115

List of Figures

Figure 1. Indonesian port territorial division	17
Figure 2. Conditions around the entrance port of Tanjung Perak	18
Figure 3. Conditions shipping channel toward the port of Tanjung Perak	23
Figure 4. Tanjung Perak Port Layout	24
Figure 5. Tanjung Perak Port Layout	25
Figure 6. Flowchart of dredging activities planning procedure	30
Figure 7. Classification of Types Dredgers (adapted from Tsinker, 2004)	33
Figure 8. Operation Cycle of Trailing Suction Hopper Dredge (Adapted from Hollinberger, 2010)	36
Figure 9. Typical Characteristics Components of Trailing Suction Hopper Dredge (Adapted from Agerschou, 2004)	37
Figure 10. Distribution of Bucket Sizes in the United States, Multiply by 0.765 for m ³ (Source Adair, 2005)	42
Figure 11. Mechanical dredge in Port of Tanjung Perak Indonesia, 2012	43
Figure 12. Operation Cycle of Grab Dredger (Source Bray et al., 1997)	44
Figure 13. Clamshell bucket in operation (adapted from de Heer, 1989)	45
Figure 14. Grab dredger: nominal output,Pnom, for various bucket sizes and dredg characteristics (Source Bray et al., 1997)	ger 46
Figure 15. Timeline of dredging project by TSHD	64
Figure 16. Comparison of other TSHD real production capacity theory	. 68

Figure 17. Comparison of production capacity for any real TSHD alternative	69
Figure 18. Comparison of production capacity for any real alternative	70
Figure 19. Grab dredger nominal output Pnom, for various_bucket sizes and dredger characteristics (Source Bray et al., 1997)	76
Figure 20. Timeline of dredging project by Clamshell	80
Figure 21. Comparison of other Clamshell real production capacity theory	83
Figure 22. Comparison of production capacity for any	83
real Clamshell alternative	83
Figure 23. Comparison of production capacity for any real alternative	85

LIST OF ABREVIATIONS

- CA : CHARTERING AGREEMENT
- GT : GROSS TONNAGE
- IDR : INDONESIAN RUPIAH
- IPC : INDONESIA PORT CORPORATION III
- mLWS : MEAN LOW WATER SPRINGS
- SOC : STATE OWN COMPANY
- OP : OTORITAS PELABUHAN (PORT AUTHORITY)
- TSHD : TRAILING SUCTION HOPPER DREDGER

1. Introduction

1.1. Background

Indonesia Port Corporation III, widely known as IPC III or Pelindo III is a state owned corporation responsible for managing the ports and harbours in the area of Central Java, East Java, Bali, South Kalimantan, Central Kalimantan, West Nusa Tenggara and East Nusa Tenggara. The operation is coordinated from the main office in the port of Tanjung Perak Surabaya, Indonesia. As one of the state owned corporation in the maritime domain, IPC III takes an active role in supporting the current administration's program especially in anticipating the user needs and improving the quality of the marine services. Several measures have been taken in order to ensure the progress, among them is to increase the depth of the Port basin to cater the operation of larger vessels with an investment of approximately \$6.25 million (The Annual Report of Indonesian Port Corporation III, 2011 - 2014). Although the maintenance dredging has already conducted in the Port annually to maintain the current depth capacity, the new dredging project will be implemented as part of the long-term infrastructure development plan.

The purpose of a development plan is to review the overall status of the Port of Tanjung Perak, the second largest port in Indonesia. The port plays a crucial role in the sea transport services, stevedoring and container handling. The growth in the last few years has justified the need for upgrading such facilities, improving the equipment in cargo handling and easing traffic congestion in the shipping lanes. The volume of shipping traffic in port of Tanjung Perak was 14,198 in 2013. The number continues to grow each year by almost 10%.

1.2. Current condition of the port traffic

As the second largest port in Indonesia, Tanjung Perak Port has a strategic role i.e., to ease the sea traffic congestion, to support the distribution network and to promote economic growth in East Java in particular and Eastern Indonesia in general. The port of Tanjung Perak also acts as the transshipment point in international trade and domestic trade activities.

Table 1 below shows the statistic of ship traffic in the port of Tanjung Perak between 2009 and 2012. The figure shows the number of units on public terminals decreased by an average of growth each year falling by 2% from 14,472 units to 13,086 units. Meanwhile, in units of GT the number increased with an average growth of 6% each year from 55,540,270 million GT, and then increase to 66,979,761 GT. The changes were mainly caused by the increase traffic of container ships including passenger ships in the Public wharf, although the port basin at that time was still in the implementation phase of the port dredging project.

					REALIZATION			AVERG.
NO.	DESCRIPTION	UNIT	2009	2010	2011	2012	2013	(%)
1	2	3	4	5	6	7	8	9
 1	SERVICES AND DISTRIBUTION Public piers							
	a. International sea transport	Unit	2.153	1.906	2.137	1.933	1.870	97
		GT	24.504.224	26.521.816	31.202.704	30.390.659	32.440.539	108
	 Domestic sea transport 	Unit	12.319	11.741	11.579	9.151	11.216	99
		GT	31.036.046	31.400.998	35.231.505	25.252.072	34.539.222	105
		Unit	14.472	13.647	13.716	11.084	13.086	98
		GT	55.540.270	57.922.814	66.434.209	55.642.731	66.979.761	106
2	DUKS							
	a. International sea transport	Unit	282	208	79	115	136	94
		GT	5.018.544	4.036.271	1.984.517	3.037.603	3.624.680	100
	 b. Domestic sea transport 	Unit	310	343	322	272	396	109
		GT	2.689.336	3.997.223	4.311.862	3.280.263	3.911.022	113
		Unit	592	551	401	387	532	100
		GT	7.707.880	8.033.494	6.296.379	6.317.866	7.535.702	101
3	Rede/Dolphin/L.Point							
	a. International sea transport	Unit	-	-	-	146	57	39
		GT	-	-	-	1.315.615	381.703	29
	b. Domestic sea transport	Unit	-	-	-	3.156	523	17
		GT	-	-	-	9.845.968	1.396.535	14
	JUMLAH 3 :	Unit	-	-	-	3.302	580	18
		GT	-	-	-	11.161.583	1.778.238	16
	TOTAL TRAFFIC (SHIPPING) ·		15.064	14.198	14.117	14.773	14.198	99
	To the Hourie (Shiring).		63.248.150	65.956.308	72.730.588	73.122.180	76.293.701	105

Table 1. Ship traffic based on type shipping and distribution

Table 2 below shows that the statistic of the volume of ship traffic until 2013 increased to as much as 14,198 units or down by 1% on an annual average. In gross tonnage that would amount to 76,298,701 GT, up to 5% increase on average annually. It can be explained that the ship visits at public piers, especially container ships in the average unit fixed and GT average rose 8%, and dry bulk vessels decreased similarly, the average unit fell 15%, but in units of GT increased by 6 %.

Then for tanker fuel, unit basis dropped by an average of 13% and an average GT grew by 3%.

NO.	orcountion		REALIZATION					AVERG
	DESCRIPTION	UNIT	2009	2010	2011	2012	2013	(%)
1	2	3	4	5	6	7	8	9
1	SERVICES AND DISTRIBUTION Public piers		1.1				5.5.8	
	a. International sea transport	Unit	2.153	1.906	2.137	1.933	1.870	97
		GT	24.504.224	26.521.816	31.202.704	30.390.659	32.440.539	108
	b. Domestic sea transport	Unit	12.319	11.741	11.579	9.151	11.216	99
		GT	31.036.046	31.400.998	35.231.505	25.252.072	34.539.222	105
	JUMLAH 1 :	Unit GT	14.472 55.540.270	13.647 57.922.814	13.716 66.434.209	11.084 55.642.731	13.086 66.979.761	98 106
2	DUKS	1.000						
	a. International sea transport	Unit	282	208	79	115	136	94
		GT	5.018.544	4.036.271	1.984.517	3.037.603	3.624.680	100
	b. Domestic sea transport	Unit	310	343	322	272	396	109
	1.230 - 2020 - 6.363	GT	2.689.336	3.997.223	4.311.862	3.280.263	3.911.022	113
	JUMLAH 2 :	Unit GT	592 7.707.880	551 8.033.494	401 6.296.379	387 6.317.866	532 7.535.702	100 101
3	Rede/Dolphin/L.Point							
	a. International sea transport	Unit	-	-	-	146	57	39
		GT	-	-	-	1.315.615	381.703	29
	b. Domestic sea transport	Unit	-	-	-	3.156	523	17
		GT	-	-	-	9.845.968	1.396.535	14
		Unit	-		-	3.302	580	18
	JUMLAH 3 .	GT	-			11.161.583	1.778.238	16
	TOTAL TRAFFIC (SHIDDING) -	Unit	15.064	14.198	14.117	14.773	14.198	99
	IOTAL INAFFIC (SHIPPING) .	GT	63 248 150	65 956 308	72 730 588	73 122 180	76 293 701	105

Table 2. Ship traffic by type of ships

Table 3. The influx of goods based on the trade and distribution

NO	DECONITIONS	UNIT			REALIZATION			AVERG.
NO.	DESCRIPTIONS	UNIT	2009	2010	2011	2012	2013	(%)
1	2	3	4	5	6	7	8	9
1.	International Trade							
	a. Import	Ton	3.116.887	3.808.458	5.563.362	7.067.544	7.628.910	126
		M3	185.302	130.806	90.344	48.718	89.839	94
		Ton/Ltr	4.001.044	1.900.762	2.728.309	956.992	924.991	81
	b. Export	Ton	815.982	774.170	644.494	657.457	479.780	88
		M3	47.985	36.832	34.299	37.533	14.450	79
		Ton/Ltr	-	-	-	-	-	0
		Ton	3.932.869	4.582.628	6.207.856	7.725.001	8.108.690	120
	Total 1st	M3	233.287	167.638	124.643	86.251	104.289	84
		Ton/Ltr	4.001.044	1.900.762	2.728.309	956.992	924.991	81
2.	Domestic Trade							
	a. Unloading	Ton	2.731.250	2.484.101	3.070.828	3.319.936	2.952.289	103
		M3	1.589.705	1.537.224	1.363.847	799.737	936.375	90
		Ton/Ltr	2.497.763	1.932.800	1.727.698	1.054.950	1.263.919	87
	b. Loading	Ton	1.546.572	1.279.849	1.763.172	1.959.443	1.488.288	102
		M3	388.224	322.620	390.169	165.092	183.491	89
		Ton/Ltr	-	-	421.200	413.950	749.398	140
		Ton	4.277.822	3.763.950	4.834.000	5.279.379	4.440.577	102
	Total 2nd	M3	1.977.929	1.859.844	1.754.016	964.829	1.119.866	90
		Ton/Ltr	2.497.763	1.932.800	2.148.898	1.468.900	2.013.317	98
		Ton	8.210.691	8.346.578	11.041.856	13.004.380	12.549.267	112
	amount 1 + 2	M3	2.211.216	2.027.482	1.878.659	1.051.080	1.224.155	89
		Ton/Ltr	6.498.807	3.833.562	4.877.207	2.425.892	2.938.308	89

The volume of the flow of goods based on the trading and distribution until 2013 in tons in total was 12,549,267 tons or an average increase of 12% annually. This is due to the growing flow of imported goods. While in units of cubic meters as much as

1,224,155, or an average fell by 11% annually; this was due to a decrease in the activity of loading and unloading plywood, molding and the displacement pattern of transporting goods to the type of cargo containers.

NO. DESCRIPTIONS SAT. 2009 2010 2011 2012 2013 (%) 1 2 3 4 5 6 7 8 9 A Public plets Ton 1.298,537 1.170,742 3.935,994 3.046,027 135 b. Bag Cargo Ton 1.658,793 1.470,075 1.238,312 9.946,400 1.098,621 97 d. Liquid bulk fuel Ton 2.560 55,213 134,469 54,092 122,757 676 e. Liquid bulk fuel Ton 1.624,620 1.421,377 1.500,228 1.960,624 1.733,821 013 i. Container Box 315,658 353,735 538,658 577,185 623,146 120 i. Container Box 315,658 353,735 538,658 577,185 623,146 120 i. Container Ton 7.181,357 7.313,640 9.992,029 11.465,83,00 114 A Genetal Cargo Ton -					REALIZATION				
1 2 3 4 5 6 7 8 9 A Public plers Ton 1.298.537 1.239.312 1.729.742 3.935.994 3.046.027 135 b. Bag Cargo Ton 1.687.193 1.298.057 2.242.67 2.239.065 1.937.642 1.085.621 1.97 6.76 1.382.364 8.488 5.432.67 1.344.89 5.432.67 1.344.89 5.442.67 1.259.624 1.085.621 1.97.76.676 1.97.76.676 1.95.76.676 1.95.76.676 1.95.76.676 1.95.76.676 1.95.76.676 1.95.76.676 1.95.76.676 1.95.76.676 1.43.81 5.068.24 1.73.93.242 10.05.824 1.73.93.242 10.05.824 1.73.93.242 10.05.824 1.05.824	NO.	DESCRIPTIONS	SAT.	2009	2010	2011	2012	2013	(%)
A Public piers a. Public piers b. Bag Cargo Ton Ton Ton 1.286.570 1.29.312 1.29.312 1.729.742 1.282.364 3.995.994 3.995.994 3.046.007 135 1.997.642 b. Bag Cargo Ton Ton L. Quitzed / Pallet Ton Ton Ton Ton L. Quitzed / Pallet Ton Ton Ton Ton L. Quitzed / Pallet Ton Ton Ton Ton L. Quitzed / Pallet 1.29.637 Ton L. Quitzed bulk feel 1.997.642 108 2.267 1.997.642 108 2.267 1.997.642 108 2.267 1.997.642 108 2.267 1.997.642 108 2.267 1.977.642 1.997.642 108 2.267 1.977.642 1.997.642 108 2.248.267 1.997.642 1.997.642 108 2.267.527 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.863.643 1.997.642 1.863.643 1.997.642 1.863.643 1.69 1.438.366 1.148.36 663.145 1.224.15 1.128.357 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.997.642 1.138.645 1.148.666 1.148.666 1.224.156 1.224	1	2	3	4	5	6	7	8	9
A Date pues a. Public pers Tm 1298.537 135.757 1293.13 170.766 1279.742 138.256 335.950 1382.256 335.950 1397.652 1397.652 1397.652 335.950 1397.652 1397.652 1397.652 1397.652 134.658 1397.652 122.757 167.65 1397.652 1397.652 134.658 1397.652 134.86 1397.652 134.86 1397.652 134.86 1397.652 136.465 1306.456 141 AMOUNT M3 - - - - - - - - -<		Dublic piere							
B Londr, Lers Hest Base Cargo Lissa 256 Ton Lissa 256 Lissa 242 Lissa 256 Lissa 256 2232 896 Lissa 256 Lissa 256 Lissa 256 2233 996 Lissa 256 Lissa 256 c. Unitized / Pallet Ton 1.557.193 1.423075 2.224267 2.239.996 1.1997.662 1.1997.662 d. Liquid bulk fuel f. Dry bulk Ton 2.560 55.213 1.34.489 55.403 1.227.77 7.676 f. Dry bulk Ton 1.624.620 1.421.377 1.902.228 1.560.824 1.739.342 103 g. Coal Ton 2.568.447 3.13.650 9.992.029 1.1656.343 11.466.546 102 h. Log Max 315.658 353.735 538.658 577.185 663.145 121 AMOUNT Ton Ton Ton - - - 0 JUKS Ton Ton 2.211.216 2.027.482 538.658 577.185 663.145 121 AMOUNT Ton/Lter Ton - - - - 0 <td>A</td> <td>a Public piers</td> <td>Ton</td> <td>1 200 527</td> <td>1 220 21 2</td> <td>1 720 742</td> <td>2 025 004</td> <td>2 046 027</td> <td>125</td>	A	a Public piers	Ton	1 200 527	1 220 21 2	1 720 742	2 025 004	2 046 027	125
b. Bag Cargo Ton 11.637 (13) 11.439.073 12.2323 (27) 2233.096 10.997.642 108 C. Unitized / Pallet Ton 22.500 55.121 134.489 54.092 122.757 675 d. Liquid bulk fed e. Liquid bulk non-fuel g. Coal Ton 1.524.620 1.421.577 1.902.228 1.900.824 1.733.42 103 g. Coal Ton 2.568.447 3.167.713 3.982.303 3.679.52 4.580.592 1165 g. Coal Ton 2.568.447 3.167.713 3.982.303 3.679.52 4.580.592 116 g. Coal Ton 2.568.447 3.167.713 3.992.029 11.853.445 11.486.506 11 MOUNT Ton Ton 2.211.216 2.02.742 1.876.733 1.856.58 577.185 623.146 121 MADUNT Ton Ton <thton< th=""> <thton<< td=""><td></td><td>a. Fublic piers</td><td>M2</td><td>1 2 50. 557</td><td>1.235.312</td><td>1.729.742</td><td>096 102</td><td>1 099 621</td><td>07</td></thton<<></thton<>		a. Fublic piers	M2	1 2 50. 557	1.235.312	1.729.742	096 102	1 099 621	07
B by Ling D M3 11918 15.445 14.545 14.5434 12.84344 12		h Bag Cargo	Ton	1 687 193	1 429 075	2 243 267	2 234 906	1 997 642	108
C. Unitzed / Pallet Ton 22.550 56.213 134.469 54.032 122.757 676 d. Liquid bulk non-fuel e. Liquid bulk non-fuel non bulk Ton 1.624.620 1.421.377 1.902.228 1.960.824 1.733.42 103 g. Cad Ton 1.624.620 1.421.377 1.902.228 1.960.824 1.733.42 103 g. Cad Ton Ton 1.524.620 1.421.377 1.902.228 1.960.824 1.739.342 103 g. Cad Ton Ton Ton 2.558.447 3.167.713 3.982.039 1.686.534 11.486.5360 114 h. Log M3 - - - - 0 1.224.155 0 AMOUNT Ton/Lter Box 315.858 353.735 538.658 577.185 623.146 120 a. General Cargo Ton - - - - 0 1.041.048 665.145 121 1.051.068 1.224.155 6 0 b. Bag Cargo Ton <td></td> <td>b. bug curgo</td> <td>M3</td> <td>19 188</td> <td>5 445</td> <td>146 834</td> <td>8 4 8 5</td> <td>223</td> <td>683</td>		b. bug curgo	M3	19 188	5 445	146 834	8 4 8 5	223	683
Base Control of All Control of C		c. Unitized / Pallet	Ton	2,560	56,213	134,489	54.092	122,757	676
d. Liquid bulk fuel b. Liquid bulk non-fuel f. Dy bulk g. Coll h. Log Ton Ton b. Bay Call M3 Ton 1.624.620 M3 Ton 1.421.377 Ton 2.563.446 Ton 2.563.446 Ton 2.563.446 Ton 2.563.446 Ton 2.563.446 Ton 2.623.146 Ton 1.246.560 TI.486.560 TI.244.186 TI.244.186 <thti.244.186< th=""> <thti.244.186< th=""> <t< td=""><td></td><td></td><td>M3</td><td>833.278</td><td>851,271</td><td>349.461</td><td>56.493</td><td>134.311</td><td>99</td></t<></thti.244.186<></thti.244.186<>			M3	833.278	851,271	349.461	56.493	134.311	99
c Liguid bulk non-fuel f. Dy bulk g. Coal h. Log h. L		d. Liquid bulk fuel	Ton/Liter	-	-	-	-	-	0
f. Dy bulk g. Col h. Log Ton 2.568.447 Ton 3.167.713 3.982.303 3.679.527 For 4.580.592 For 116 For b. Log M3 - - - - - - - - - - 0 b. Log M3 - - - - - - 0 c. Container Box 315.858 353.735 538.658 577.185 665.145 120 AMOUNT PUBLIC PIER Ton - - - - 0 0 - - 0 0 0 1.224.155 0 0 0 1.241.155 0 0 1.241.166 1.204.155 0 0 1.241.166 1.204.155 0 0 1.241.166 1.204.155 0 0 1.224.156 1.148.665 1.148.665 1.148.665 1.148.665 1.145.866 1.148.665 1.145.866 1.014.186 665.145 121 0 1.124.166 1.148.166 1.145.166		e. Liquid bulk non-fuel	Ton	1.624.620	1.421.377	1.902.228	1.960.824	1.739.342	103
g. Coal h. Log h. Log t. Container Ton Box Box Box Box Box Box Box Box Box Box		f. Dry bulk	Ton	2.568.447	3.167.713	3.982.303	3.679.527	4.580.592	116
h. Log h. Container M3 Teus 315.85 352.733 536.56 569.968 577.185 1.438 665.145 665.145 11.486.541 1.224.155 0 AMOUNT PUBLIC PTER Ton Ton/Liter Ton/Liter 2.207.33 356.446 9.992.020 11.865.343 665.145 121 AMOUNT PUBLIC PTER Ton/Liter 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 0 B DKS a. Ceneral Cargo Ton - - - 0 b. Bag Cargo Ton - - - - - 0 C. Unitized / Pallet Ton - - - - 0 f. Liquid buik non-fuel Ton - - - - 0 G. Cultairer Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton/Liter - -		g. Coal	Ton	-	-	-	-	-	0
I. Container Box 313.838 333.735 338.638 577.185 62.31.46 121 Ton 7.181.357 7.313.690 9.992.029 11.865.343 11.486.360 11.4 AMOUNT M3 2.211.216 1.57.080 1.97.08 1.224.157 0 PUBLIC PER Box 315.858 353.735 538.658 577.185 623.146 120 B DUKS Teus 326.753 365.446 569.968 611.438 665.145 121 b. 8ag Cargo Ton - - - - - - 0 M3 - - - - - - 0 c. Unitized / Pallet Ton - - - - 0 0 d. Liquid bulk fuel - Ton - - - - 0 0 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105		h. Log	M3	-	-	-	-		0
Instruction Ton Ton <th< td=""><td></td><td>i. Container</td><td>Box</td><td>315.858</td><td>353.735</td><td>538.658</td><td>577.185</td><td>623.146</td><td>120</td></th<>		i. Container	Box	315.858	353.735	538.658	577.185	623.146	120
Init 1.13.37 7.313.690 3.92.029 1.836.343 1.146.360 1.224 1.28 AMOUNT Ton, Ittle S 3.53.735 538.658 577.185 623.146 1.224 1.274 1.175 0 1.274 1.175 1.17			Teus	326./53	365.446	569.968	611.438	665.145	121
AMOUNT PUBLIC PIER PD Box 2.2112-0 315.958 2.221762 1.076.039 1.027.030 1.224.153 0 0 8 DUKS a. General Cargo Ton - - - - - - - 0 6 DUKS a. General Cargo Ton - - - - - - - - 0 7 Ton - - - - - 0			M2	2 211 216	2 027 492	9.992.029	1 051 090	1 224 155	0
PUBLIC PHER Box Teus 315.858 353.735 538.658 577.165 623.146 120 8 DUKS a. General Cargo Ton - 0		AMOUNT	Ton/Liter	2.211.210	2.027.402	-	-	-	ŏ
Total Teus 326.753 365.446 569.968 611.438 665.145 121 B DUKS - 0 <th></th> <th>PUBLIC PIFR</th> <th>Box</th> <th>315,858</th> <th>353,735</th> <th>538,658</th> <th>577,185</th> <th>623,146</th> <th>120</th>		PUBLIC PIFR	Box	315,858	353,735	538,658	577,185	623,146	120
B DUKS a. General Cargo Ton M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 0 M3 1.032.888 1.049.827 <th></th> <th></th> <th>Teus</th> <th>326.753</th> <th>365.446</th> <th>569.968</th> <th>611.438</th> <th>665.145</th> <th>121</th>			Teus	326.753	365.446	569.968	611.438	665.145	121
B DWS a. Ceneral Cargo Ton b. Bag Cargo Ton 0 c. Unitized / Pallet Ton 0 0 d. Liquid bulk fuel e. Liquid bulk fuel f. Dry bulk Ton /Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 0 0 h. Log M3 0 0 AMOUNT DUKS Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Container Box									
Constant Cargo Ton b. Bag Cargo Ton Ton 0 c. Unitized / Pallet Ton 0 d. Liquid bulk fuel Ton 0 0 g. Call Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 0	В	DUKS							
K M3 0 C. Unitized / Pallet Ton 0 0 d. Liquid bulk fuel Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton/Liter 6.498.807 3.83.562 4.877.207 2.425.892 2.761.559		a. General Cargo	Ton	-	-	-	-	-	
C Bag Cargo 101 0 c. Unitized / Pallet Ton 0 d. Liquid bulk fron-fuel Ton 0 f. Dry bulk Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 0 0 1.239.656 105 0			M3	-	-	-	-	-	
C. Unitized / Pallet Ton - - - - - - - - - - - - - - - - - 0 0 d. Liquid bulk fuel e. Ton Ton 1.032.888 1.049.827 1.139.037 1.239.656 105 0		b. Bag Cargo	I on	-	-	-	-	-	0
C. Ontriced / nate Ion - - - - - 0 d. Liquid bulk fuel e. Liquid bulk non-fuel f. Dry bulk Ton / Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 h. Log M3 - - - - - 0 i. Container Box - - - - 0 0 M3 - - - - - - 0 AMOUNT DUKS Ton / Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 max - - - - - - 0 M3 - - - - - - 0 M3 - - - - - - 0 0 M3 -		c Unitized / Pallet	Ton		_				0
d. Liquid bulk fuel e. Liquid bulk non-fuel f. Dry bulk g. Coal Ton',Liter Ton 6.498.807 1.029.334 3.833.562 4.877.207 2.425.892 2.761.559 87 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 h. Log Box - - - - - 0 h. Log M3 - - - - 0 Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 MOUNT DUKS M3 - - - - - 0 Teus - - - - - 0 0 AMOUNT DUKS Ton - - - - 0 0 a. General Cargo Ton - - - - 0 0 0 b.		c. officized / failed	M3	-	-	-	-	-	ő
e. Liquid bulk non-fuel f. Dry bulk Ton Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 h. Log M3 - - - - 0 0 h. Log M3 - - - - 0 0 i. Container Box - - - - 0 0 Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 mass - - - - - 0 0 Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 mass - - - - - - 0 Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 mass - - - - - - 0 MOUNT DUKS Ton - - - <td< td=""><td></td><td>d. Liquid bulk fuel</td><td>Ton/Liter</td><td>6.498.807</td><td>3.833.562</td><td>4.877.207</td><td>2,425,892</td><td>2,761,559</td><td>87</td></td<>		d. Liquid bulk fuel	Ton/Liter	6.498.807	3.833.562	4.877.207	2,425,892	2,761,559	87
f. Drýbulk g. Coal Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 h. Log M3 - - - - - 0 I. Container Box - - - - 0 I. Container Box - - - 0 0 MOUNT DUKS Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 MB - - - - - - 0 MOUNT DUKS Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 MADUNT DUKS Ton 5.833.552 4.877.207 2.425.892 2.761.559 87 Ge (LP/Dolphin a. General Cargo Ton - - - - 0 0 G. Unitized / Pallet Ton - - - - 0 0 0 G. Coal Ton -		e. Liquid bulk non-fuel	Ton	-	-	-	-	-	0
g. Coal Ton - - - - - - 0 h. Log M3 - - - - - 0 i. Container Box - - - - 0 Teus - - - - - 0 AMOUNT DUKS M3 - - - - 0 AMOUNT DUKS M3 - - - - 0 Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 MOUNT DUKS Ton - - - - 0 0 Teus - - - - 0 0 0 b. Bag Cargo Ton - - - 0 0 0 c. Unitized / Pallet Ton - - - 0 0 0 g. Coal Ton - - <td></td> <td>f. Dry bulk</td> <td>Ton</td> <td>1.029.334</td> <td>1.032.888</td> <td>1.049.827</td> <td>1.139.037</td> <td>1.239.656</td> <td>105</td>		f. Dry bulk	Ton	1.029.334	1.032.888	1.049.827	1.139.037	1.239.656	105
h. Log i. Container M3 Box Ton - - - - - - - - <td></td> <td>g. Coal</td> <td>Ton</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>0</td>		g. Coal	Ton	-	-	-	-	-	0
i. Container Box Teus - - - - - - 0 Teus Ton 1.029.334 1.032.888 1.049.827 1.139.037 1.239.656 105 AMOUNT DUKS M3 - - - - - 0 Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 Teus - - - - - - 0 Teus - - - - - 0 0 Ageneral Cargo Ton - - - - 0 0 b. 8ag Cargo Ton - - - 0 0 0 c. Unitized / Pallet Ton - - - 0 0 0 f. Dry bulk Ton - - - 0 0 0 f. Dry bulk Ton - - - 0		h. Log	M3	-	-	-	-	-	0
Image: Constraint of the		i. Container	Box	-	-	-	-	-	0
C Rede /LP/Dolphin a. General Cargo Ton Ton Box Ton Box Ton Box <thton Box Ton Box <tht< td=""><td></td><td></td><td>Teus</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0</td></tht<></thton 			Teus	-	-	-	-	-	0
AMOUNT DUKS Ton/Liter Box 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 C Rede /LP/Dolphin a. General Cargo - - - - - - 0 b. Bag Cargo Ton M3 - - - - - 0 c. Unitized / Pallet Ton f. Dry bulk Ton M3 - - - - 0 d. Liquid bulk fuel e. Liquid bulk non-fuel f. Dry bulk Ton M3 - - - - 0 g. Coal h. Log M3 - - - - 0 0 g. Coal h. Log M3 - - - - 0 0 g. Coal h. Log M3 - - - - 0 0 Ton/Liter f. Dry bulk Ton no - - - - 0 0 MOUNT Rede/LP/Dolphin M3 - - - - 0 0 0 <t< th=""><th></th><th></th><th>M3</th><th>1.029.554</th><th>1.032.000</th><th>1.049.627</th><th>1.159.057</th><th>1.239.030</th><th>105</th></t<>			M3	1.029.554	1.032.000	1.049.627	1.159.057	1.239.030	105
Box - - - - - - 0 C Rede /LP/Dolphin a. General Cargo Ton - - - - 0 D Ma - - - - - 0 b. Bag Cargo Ton M3 - - - 0 0 c. Unitized / Pallet Ton /Liter - - 0 0 0 d. Liquid bulk fuel Ton /Liter - 0 0 0 0 e. Liquid bulk non-fuel Ton - - 0 0 0 f. Container Box - - - 0 0 0 t. Container Box - - - 0 0 0 treus - - - - 0 0 0 h. Log M3 - - - 0 0 0 0 0 0		AMOUNT DUKS	Ton/Liter	6.498.807	3.833.562	4.877.207	2.425.892	2.761.559	87
C Teus - - - - - 0 C Rede /LP/ Dolphin a. General Cargo Ton M3 Image: Cargo Ton M3 Image: Cargo Ton M3 Image: Cargo			Box	-	-	-	-	-	0
C Rede /LP/ Dolphin a. General Cargo N Second M3			Teus	-	-	-	-	-	0
C Rede /LP/ Dolphin Ton 0 a. General Cargo Ton M3 0 0 b. Bag Cargo Ton 0 0 0 c. Unitized / Pallet Ton 0 0 0 d. Liquid bulk fuel Ton /Liter 0 0 0 e. Liquid bulk fuel Ton /Liter 0 0 0 f. Dry bulk Ton 0 0 0 0 g. Coal Ton 0 0 0 0 0 h. Log M3 0 0 0 0 0 0 i. Container Box 0 0 0 0 0 0 reus - - - - 0 0 0 h. Log M3 - - - 0 0 0 reus - - - - 0 0 0 0 0 0 0 <td>~</td> <td>De de 71 D/Del aleire</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	~	De de 71 D/Del aleire							
a. General cargo 10n M3 M3 0 b. Bag Cargo Ton M3 0 0 c. Unitized / Pallet Ton M3 0 0 d. Liquid bulk fuel Ton/Liter 0 0 e. Liquid bulk fuel Ton/Liter 0 0 e. Liquid bulk fuel Ton/Liter 0 0 e. Liquid bulk fuel Ton/Liter 0 0 f. Dry bulk Ton 0 0 g. Coal Ton 0 0 h. Log M3 0 0 i. Container Box 0 0 Ton/Liter - - - 0 Rede/LP/Dolphin M3 - - 0 Ton A - - - 0 0 Ton L - - - 0 0 Ton/Liter - - - 0 0 Ton/Liter - - - 0 0 <td>C</td> <td>Rede /LP/Dolphin</td> <td>Ton</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>	C	Rede /LP/Dolphin	Ton						0
b. Bag Cargo Ton M3 M3		a. General Cargo	M3						0
Amount M3 0 c. Unitized / Pallet Ton 0 M3 Ton 0 d. Liquid bulk fuel Ton/Liter 0 e. Liquid bulk non-fuel Ton 0 f. Dry bulk Ton 0 g. Coal Ton 0 h. Log M3 0 i. Container Box 0 Teus 0 0 M3 - - M43 - - 0 i. Container Box 0 0 Ton/Liter - - - 0 M3 2.211.216 2.027.482 1.878.659 1.051.080 12.242.155 M3 2.211.216 2.027.482 1.878.659 1.051		b. Bag Cargo	Ton						õ
c. Unitized / Pallet Ton M3 Ton M3 Ton M3 Image: Constant of the co		or buy cargo	M3						õ
M3 M3 O O d. Liquid bulk fuel Ton/Liter Ton/Liter 0 0 e. Liquid bulk non-fuel Ton Ton 0 0 f. Dry bulk Ton Ton 0 0 g. Coal Ton Ton 0 0 h. Log M3 - - 0 i. Container Box 0 0 0 M3 - - - 0 M83 - - 0 0 Ton Ton - - 0 Ton - - - 0 Ton - - - 0 M83 - - - 0 MOUNT M3 - - - 0 Ton/Liter - - - 0 0 Ton/Liter - - - 0 0 Ton/Liter		c. Unitized / Pallet	Ton						0
d. Liquid bulk fuel e. Liquid bulk non-fuel f. Dry bulk g. Coal Ton Ton Ton Ton Image: Coal Ton M3 Image: Coal Ton M3 Image: Coal Ton Ton H. Log Image: Coal M3 Image: Coal Ton Ton Teus Image: Coal Ton Ton Ton Ton Ton Ton Ton Ton Ton Ton			M3						0
e. Liquid bulk non-fuel f. Dry bulk g. Coal h. Log i. Container AMOUNT Rede/LP/Dolphin Ton/Liter Ton/Liter Ton 8.210.691 8.346.578 TO T A L M3 2.211.216 2.027.482 1.1.041.856 13.004.380 12.726.016 112 1.051.080 1.224.155 87 7538.658 538.658 577.185 623.146 120 100 00 00 00 00 00 00 00 00		d. Liquid bulk fuel	Ton/Liter						0
f. Dry bulk Ton Ton O O g. Coal Ton Ton Image: Coal of the second seco		e. Liquid bulk non-fuel	Ton						0
g. Coal 100 0 h. Log M3 0 i. Container Box 0 Teus - - 0 AMOUNT Ton - - 0 Rede/LP/Dolphin M3 - - - 0 Ton/Liter - - - 0 0 Ton/Size - - - 0 0 M3 2.211.216 2.027.482 18.78.659 13.004.380 12.726.016 112 M3 2.211.216 2.027.482 1.8		t. Dry bulk	Ton						0
In. Log IMS 0 i. Container Box 0 Teus - - 0 AMOUNT M3 - - - 0 M3 - - - - 0 Rede/LP/Dolphin M3 - - - 0 Ton/Liter - - - 0 0 Ton/Liter - - - 0 0 Ton/Liter - - - 0 0 Ton/Liter - - - - 0 Ton/Liter - - - - 0 Ton/Box - - - - 0 M3<		g. Coal	I ON						0
AMOUNT Rede/LP/Dolphin Ton Ton/Liter - - - 0 AMOUNT Rede/LP/Dolphin M3 - - - - 0 Ton - - - - 0 0 Ton/Liter - - - - 0 Ton/Liter - - - 0 Ton/Liter - - - 0 Ton 8.210.691 8.346.578 11.041.856 13.004.380 12.726.016 112 M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 TOTAL M3 2.211.216 2.027.482 1.878.659 2.051.080 1.224.155 89 TOTAL Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 Box 315.858 353.735 538.658 577.185 623.146 120		i. Container	Roy						0
AMOUNT Rede/LP/Dolphin Ton M3 - - - - - 0 Ton/Liter - - - - - 0 Ton/Liter - - - - 0 0 Ton 8.210.691 8.346.578 11.041.856 13.004.380 12.726.016 112 M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 TOTAL M3 2.215.858 353.735 538.658 577.185 623.146 120		i. container	Teus						0
AMOUNT Rede/LP/Dolphin M3 - - - - - 0 Ton/Liter - - - - - 0 Box - - - - 0 0 Ton/Liter - - - - 0 0 Ton 8.210.691 8.346.578 11.041.856 13.004.380 12.726.016 112 TOTAL M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 TOTAL M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 Box 315.858 353.735 538.658 577.185 623.146 120			Ton	-	-	-	-	-	Ő
Ton/Liter - - - - 0 Rede/LP/Dolphin Box - - - - 0 Ton Rede/LP/Dolphin Box - - - - 0 Teus - - - - - 0 0 Ton 8.210.691 8.346.578 11.041.856 13.004.380 12.726.016 112 M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 TOTAL Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 Box 315.858 353.735 538.658 577.185 623.146 120		AMOUNT	M3	-	-	-	-	-	0
Box - - - - - 0 Teus - - - - - 0 Ton 8.210.691 8.346.578 11.041.856 13.004.380 12.726.016 112 M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 TOTAL Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 Box 315.858 353.735 538.658 577.185 623.146 120		Rede/LP/Dolphin	Ton/Liter	-	-	-	-	-	0
Teus - - - - 0 Ton 8.210.691 8.346.578 11.041.856 13.004.380 12.726.016 112 M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 TOTAL Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 Box 315.858 353.735 538.658 577.185 623.146 120		Keue/LF/D0ipilin	Box	-	-	-	-	-	0
Ton 8.210.691 8.3465.578 11.041.856 13.004.380 12.726.016 112 M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 TOTAL Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 Box 315.858 353.735 538.658 577.185 623.146 120			Teus	-	-	-	-	-	0
M3 2.211.216 2.027.482 1.878.659 1.051.080 1.224.155 89 T O T A L Ton/Liter 6.498.807 3.833.562 4.877.207 2.425.892 2.761.559 87 Box 315.858 353.735 538.658 577.185 623.146 120			Ton	8.210.691	8.346.578	11.041.856	13.004.380	12.726.016	112
Box 315.858 353.735 538.658 577.185 623.146 120		TOTAL	M3	2.211.216	2.027.482	1.8/8.659	1.051.080	1.224.155	89
		IVIAL	Box	315 858	353 735	538 658	2.423.092	623 146	120
leus 326.753 365.446 569.968 611.438 665.145 121			Teus	326.753	365.446	569.968	611.438	665.145	121

Table 4. Flow goods based packaging and distribution

The volume of the flow of goods to 2013 on a public pier amounted to 11,486,360 million tons or an average increase of 14% and amounted to 1,224,155 m3 or fell by an average of 11%. The shifting patterns of general cargo freight container led to this decline.

The volumetric movement of containers from 2009 to 2013 are as follows:

Table 5. Container Flows

NO	DESCRIPTIONS	CAT			REALIZATION			AVERG.
10.	. DESCRIPTIONS	JAI.	2009	2010	2011	2012	2013	(%)
1	2	3	4	5	6	7	8	9
1	Conventional terminal							
	a. International	Box	2.942	22.915	36.022	8.584	3.254	249
		TEU's	2.953	23.098	36.235	8.965	3.260	250
	b. Domestic	Box	309.181	330.820	502.637	568.601	619.892	120
		TEU's	320.041	342.348	533.735	602.473	661.885	121
	Amount conventional	Box	312.123	353.735	538.659	577.185	623.146	120
	terminal	TEU's	322.994	365.446	569.970	611.438	665.145	121
2	Container terminal							
	a. International	Box						0
		TEU's						0
	b. Domestic	Box						0
		TEU's						0
	Amount container	Box	-	-	-	-	-	0
	terminals	TEU's	-	-	-	-	-	0
	Amount 1 + 2	Box	312.123	353.735	538.659	577.185	623.146	120
		TEU's	322.994	365.446	569.970	611.438	665.145	121

Volume handled until 2013 reaching 623,146 boxes at an average increase of 20% annually, and in units amounted to 665,145 TEU's achieved TEU's, at an average increase of 21% annually.

The flow of passenger ships up to 2013 realized as many as 738,326 people or on average fell by 5% annually. The trend is the use of air transportation of passengers in the country in recent times is preferred by the community with the affordability of ticket prices as well as being faster and more efficient in terms of time compared with other modes of marine transport. while for passengers abroad, which began in 2012, there were as many as 1,200 people and the realization by 2013 as many as 3,526 people.

NO	DECOUDTIONS		REALIZATION					
NO.	DESCRIPTIONS	UNIT	2009	2010	2011	2012	2013	(%)
1	2	3	4	5	6	7	8	9
1	INTERNATIONAL							
	a. Debarkation	Person	-	-	-	601	1.762	293
	b. Embarkation	Person	-	-	-	599	1.764	294
	Amount 1	Orang	-	-	-	1.200	3.526	294
2	DOMESTIC							
	a. Debarkation	Person	472.347	428.399	473.982	464.014	399.282	96
	b. Embarkation	Person	465.450	489.637	506.871	432.302	335.518	93
	Amount 2	Person	937.797	918.036	980.853	896.316	734.800	95
	TOTAL	Person	937.797	918.036	980.853	897.516	738.326	95

Table 6. The flow of passengers

Table 7. The flow of animal

NO	DECORIDEIONIC	UNIT			REALIZATION			AVERG.	
	DESCRIPTIONS	UNIT	2009	2010	2011	2012	2013	(%)	
1	2	3	4	5	б	7	8	9	
1	INTERNATIONAL								
	a. Import	Ekor	28.980	13.486	4.686	-	-	41	
	b. Export	Ekor	-	-	-	-	-	0	
	Amount 1	Ekor	28.980	13.486	4.686	-	-	41	
2	DOMESTIC								
	a. Unloading	Ekor	14.339	7.631	3.594	12.499	24.173	160	
	b. Loading	Ekor	-	-	-	65	-	0	
	Amount 2	Ekor	14.339	7.631	3.594	12.564	24.173	161	
	OVERALL TOTAL	Ekor	43.319	21.117	8.280	12.564	24.173	108	

Flows of animals up to 2013 realized as much as 24,173 animals or or an average increase of 8% annually.

1.3. Aim and Objectives of the research.

In order to guide the structure of the research, I have set up the aim and objectives of the study as follows:

1.3.1. Aim of the research

The aim of this study is to assess the effectiveness of the operational calculation method used in the dredging operation. The study will analyze the calculation method used by the contractor in comparison to the realization of the project. The study will seek to identify the gap between the calculations used by the contractor, the reason behind the phenomenon and suggest a better approach in calculating the productivity of the dredging operation.

1.3.2. Objectives of the research

The objectives of the research are;

- To analyze the real productivity of dredgers working on the project site (Port of Tanjung Perak basin);
- To identify the problems in dredge operations;
- To propose alternative solutions in improving the productivity of dredging operations.

1.4. Methodology

This research will use the quantitative analysis method, by reviewing the implementation of the dredging project at Tanjung Perak Port in 2012. The data will be collected from available sources such as contract of the project, weekly project reports, and drawing projects. The analysis will further perform calculations on the theory of real productivity of existing dredger according to the findings in data collections and then analyze the volume and the rest time of execution of project based on project data. Then, it will aim to determine the type of alternative dredger fleet owned by the contractor in accordance with the material and location of dredging, calculating productivity dredgers alternative based on approach method and project data. Further, the acceleration time will be calculated based on the real productivity theory of the existing dredging and alternative solutions including financial costs. The aim, therefore, will be to present a wide range of alternative solutions based on the analysis. Raw data for the objective will be obtained from the following sources:

 a) IPC III, the Main Branch Office Tanjung Perak port of Surabaya: Chartering Agreement (CA) Implementation of Port Dredging Tanjung Perak Surabaya in 2012.

- b) PT Rukindo, daily and weekly Report on The implementation of Port Dredging Project Tanjung Perak Surabaya.
- c) Annual report of IPC III from 2011 through 2014: reports uptake of investment within a year.
- Regulation of the Minister of Transportation of the Republic of Indonesia No. KM. 70 In the year 2010, regarding standard costs in 2011 in the ministry of transportation.

1.5. Limitations of the Research

Scope and limits the discussion of problems in this research are:

- a) The analysis is restricted to the port dredging project of Tanjung Perak Surabaya for 2012-2013.
- b) Discussion on dredgers is limited to the dredgers held in the inventory of PT Rukindo as the local contractor.
- c) The calculation of the acceleration of the work using an alternative addition of dredgers based on analysis of the selection of dredgers that can generate higher productivity.
- d) Calculation of the financial cost of each alternative solution is based on the rules that apply to the Regulation Minister of Transportation of the Republic of Indonesia No. KM. 70 In the year 2010, regarding standard costs in 2011 in the ministry of transportation.

1.6. Structure of the Research

The research will cover the following subjects:

- a) *Introduction*. Covering the background of the research, scope of work, the methodology used, an objective that will be achieved and structure and organization of the research
- b) *Literature review*. In-depth information about dredging concept on how dredging project operations through a combination of dredgers including types

of dredgers used, estimation of productivity dredgers, consideration of the reduction factor, dredging operation and type of soil dredged.

- c) *Analysis*. Analysis of the productivity and cost estimate calculations are based on a case study of delay in dredging in the Port of Tanjung Perak Surabaya. This chapter will present an analysis of project delays that occurred in the project, plus information related to the type of dredgers involved in the project, and the calculation of the productivity of each kind of dredger including the kind of dredger. In addition, the calculation of estimated achievement of the project according to the type dredgers and cost calculation will be based on the type of dredger selected.
- d) *Recommendations*. Following the findings of an analysis of the possibility of acceleration of the implementation of dredging, recommendations will be proposed with the aim of improving the performance of dredging in the area of IPC;
- e) *Conclusion*. The conclusion will endeavor to present a summary of all the information, analysis, results, and recommendations.

2. Geographical and business condition of the Port of Tanjung Perak

2.1. Background

Ports are places for the ship to moor, anchor, embark or disembark passengers, loading or unloading of goods and are equipped with the safety of shipping and port supporting activities as well as the displacement of intra and inter-modal transport (Bichou, 2009). A port is also a gateway to a country as a connecting infrastructure in the form of import-export goods flow between regions, ship traffic, both foreign and domestic, as well as; the flow of animals and animal products and plants.

IPC III is an SOC that is involved in port and harbor services in Seventh Indonesian province including 43 ports covering Central Java, East Java, Bali, West Nusa Tenggara, East Nusa Tenggara, Central Kalimantan and South Kalimantan.

Figure 1. Indonesian port territorial division

Tanjung Perak is one of the gateways to Indonesia, which serves as a trans-shipment hub for transportation of goods from and to the eastern part of Indonesia, including the province of East Java, because of its strategic location. It is well connected with the hinterland and plays a very significant role in promoting national economic growth in East Java and region East Indonesia. This port belongs to the main class port owned by Pelindo III, and it is located in position E 112 32' 22" and S 07 11" 54", precisely in the Madura Strait, north Surabaya. The port covers a water area of 1,574.3 hectares and a land area of 574.7 hectares area.

Figure 2. Conditions around the entrance port of Tanjung Perak

Due to the increased activities of the port, IPC III decided to expand the port and port operations by the planned development of some port facilities. The development, in general, can be divided into four main activities comprising, development of Container Terminal III, improvement of western navigation channel, improvement of the Jamrud Terminal, deepening of port basin and the a construction of a New Passenger Terminal. As highlighted in the development plan, deepening of the port basin is the immediate activity that needs to be undertaken. Furthermore, the nature of the bottom in the Madura Straits is silts, clay and sand. Therefore, the use of a combination of mechanical dredgers namely grab clamshell or TSHD would be recommended. In the actual maintenance dredging of the port basin of Tanjung Perak, large portions of the dredging work are carried out by TSHD, and grab bucket Dredgers (clamshell) are used as well in front of the wharf walls or narrow slips of the water area where TSHD cannot enter. Hence, a combination of TSHD and grab clamshell is applied in the port development project as the most economical dredging method with high productivity. The designated area for dumping dredged material by OP, is approximately 6 nautical miles from Port of Tanjung Perak. The dumping ground is located in the following coordinate;

07° 10' 28"S, *112° 45' 58"E 07° 11' 31"S*, *112° 45' 57"E*

2.2. Dredging contractual terms and conditions

The general description contained in the dredging project contract, states the type of work namely dredging, transporting and disposal of dredging material. In addition, dredging location in the port of Tanjung Perak Surabaya, along with the area to be dredged (Figure 1), and the depth details (Table 8). Furthermore, the type of material, along with the siltation rate of 10%. Also, the general obligations and rights of the both parties <u>are</u> as follows;

1.5.1 Obligations of the owner of the project (PT Pelindo III);

- Giving an advance and the periodic payments based on the progress of the project as agreed;
- Carring out the pre-dredge sounding;
- Carrying the final sounding together with the contractor;
- Coordinating with contractors to smooth the process of implementation of the work.

1.5.2 Project owner rights:

- Conducting supervision or put the officer as monitors the implementation of the work;
- Giving warning of omission conducted by the contractor;
- Receiving periodic reports of work.
- 1.5.3 Obligations of project implementers (contractors)
 - Carrying out the dredging project, transportation, and disposal of dredging material issues in the implementation of dredging;

- Executing the project by using a type of trailing suction hopper dredger dredger (TSHD) and a clamshell with a number of tools are sufficient and in good condition and ready for operation (working);
- Proposing the replacement of the type and number of dredgers if necessary from the project site and must be approved by the project owner;
- Repairing any damage to dredger and does not bother project implementation schedule has been agreed;
- Completing any kind of project activity with occupational safety and health equipment for all workers involved in the project.
- 1.5.4 Rights of contractor:
 - Accept payments on the results of the dredging in accordance with the agreed rules;
 - Give priority related to the place and time in conducting the dredging operations.
- 1.5.5 Several parameters affecting the unit price of dredger are as follows:
 - The distance dispose which affects the trip;
 - The base price of the fuel economics of High Speed Diesel (HSD) solar taken from Indonesian state-owned oil company (PT Pertamina).
 - HSD diesel economical price basis used in the project is from the average data the previous year of IDR 8,108, / litre.

2.1. Sedimentation

Sedimentation is a significant cause of concern in the port basin and shipping lanes. In 2012, the deposition levels in the six terminals reached more than one million cubic meters, and therefore it became critical to do the dredging immediately, considering that this port is the second largest owned by the Indonesian state. However, for the sixth terminal, the area comprises of North Jamrud Terminal, South Jamrud Terminal, East Berlian Terminal, West Berlian Terminal, Nilam Terminal, and Mirah Terminal, with a total volume of 1,190,595 m³. This dredging project is being carried out in collaboration with PT Rukindo, a state-owned dredging company and the work is planned for 150 calendar days.

2.2. Productivity issues

In the past, it has been observed that during the implementation of dredging work by local contractors, the productivity was very low. This was because the age of the dredger was based on a ship's particular documents and despite the old age of the vessel, the productivity was being reflected very high. Other factors contributing to the low productivity were the ship traffic, the level of expertise of the crew, and the level of maintenance of the ship and inability of the crew to adjust with the local weather. Delays in the implementation of this work are extremely detrimental to the owner of the port because it can cause congestion, vessel queues become longer and lead to far-reaching effects for the economy.

2.3. Administrative delays

Delays in the implementation of the dredging project in the IPC region are often caused by the low productivity performance of local contractors as well as the difficulty of obtaining a license for dredging project from the government, which eventually leads to the project not being completed according to the contractual obligations thereby resulting in the termination of contracts. As for some of the existing dredging projects in the port area of IPC III, such as the dredging project at the Port of Tanjung Perak for 2012-2013, with a total contract value of IDR 60 billion (physical realization of the target of the fourth quarter of 2013 only 75%) and dredging the pond in TPKS front dock Semarang in 2012-2013 with a total contract value of IDR 22 billion Rupiah (physical realization of the target of the fourth quarter of 2013 only 30%). (Annual Report of Indonesian IPC III, 2011 - 2014).

2.4. Management issues

The future contracts require a good dredging project operational management to anticipate the problems, address delays in completion of work thereby addressing the port congestion. Further in-depth observations are needed to determine the cause of the delay in the implementation of this dredging project. In addition, ways and means have to be devised for on-time completion by improving the productivity of dredging and accelerating the project to finish on schedule. For issues concerning the above, particularly the dredging project at Tanjung Perak Port, all stakeholders should plan to control the risk of possible delays in the execution of work by reviewing capacity production vis a vis dredger age and maintenance. In addition, an approach for the analysis of productivity vis a vis the dredging equipment being employed on the dredging project through calculations needs to be adopted as the best approach.

In general, the environmental conditions around the port of Tanjung Perak as follows;

2.5. Shipping Channel

The Western shipping channel is the main route to enter the port of Tanjung Perak (Figure 3), which is 25 nautical miles in length, 100 meters wide with depths varying between 9.7 to 12 mLWS. The navigable channel has been equipped with 24 buoys and a pilotage station in Karang Jamuang serving 24/7, throughout the year. The other channel, the East shipping channel is 22.5 nautical miles in length, 200 meters wide with a depth of between 2.5 to 5 mLWS and along this pathway has been equipped with 8 buoys.

2.6. Port water area

The port of Tanjung Perak has extensive outer port water area extending to 15.5563 million m2 and 784,000 m2 respectively, as well as a well-marked anchorage area defined by the following coordinates;

1. 07°11'18" S / 112° 42'42" E	2. 07°11'32" S / 112° 43'19" E
3. 07°11'28" S / 112° 43'30" E	4. 07°11'17"S / 112° 43'30"E

Figure 3. Conditions shipping channel toward the port of Tanjung Perak

2.7. Port pilotage

Pilotage is compulsory in the port. Therefore, 39 pilots have been employed, some of whom serve to guide the ship for sailing in the designated shipping lanes and other are pilots in charge of navigational guidance of vessels in the port area. The pilot station is located at the Karang Jamuang station outside at the position S 06° 53'34" and E112° 43' 46" with a water depth of 12 mLWS, which can be reached via radio IJHV on channel 6- 8 - 12 - 14 and 16 for 24 hours non-stop. Tug and security assistance has been provided by means of six tugs powered by 800- 2400 HP engine and three waveguides vessel powered by 350-960 EB 'and 6 coastal vessels powered 125-250 MK.

	D	C C			
TANJUNG F	PERAK PORT	TERMINA		s	
TANJUNG F	PERAK PORT	TERMINA	L FACILITIE BERLIAN	s NILAM	KALIMAS
TANJUNG P DESCRIPTIONS	PERAK PORT	TERMINA MIRAH B	L FACILITIE BERLIAN C	s NILAM D	KALIMAS
TANJUNG P DESCRIPTIONS LONG WHARF (m)	PERAK PORT JAMRUD A 2.190	TERMINA MIRAH B 640	L FACILITIE BERLIAN C 1.620	S NILAM D 930	KALIMAS E 2.270
TANJUNG F DESCRIPTIONS LONG WHARF (m) EXTENSIVE WAREHOUSE (m2)	PERAK PORT JAMRUD A 2.190 43.265	TERMINA MIRAH B 640 13.450	ERLIAN C 1.620 11.375	S NILAM D 930	KALIMAS E 2.270 6.180

Figure 4. Tanjung Perak port layout

2.8. Current, Wave and Wind

There are two dominant currents found in shipping lanes and berths, i.e., from west to east and from east to west. Substitution direction occurs every 6 hours at a speed of 3 knots. The maximum wave height around the outside threshold is about 1.5 m and at the berth approximately 0.5 m. The average wind speed in the port is at around 12 knots.

Figure 5. Dredging project area

 Table 8. Depth design of port basin

No	LOCATION	DESIGN DEPTH
Α	TYPE OF HOPPER DREDGER	
1.	In front of the pier until the middle of an Eastern Berlian (12.5 m - 75 m) from the front of the pier, South Jamrud (10 m - 40 m) from the front of the pier, West Jamrud (50 m) from the front of the pier.	-10m LWS
2.	In middle pond between East Nilam and West Berlian (50 m) from the front of the East Nilam pier.	-9 m LWS
3.	In front of East Berlian	
	Design -9m LWS (125 m from the front of pier)	-9m LWS
4	Middle pond between East Berlian, Mirah, and DOK	
	a. 125m – 175m from the edge of East Berlian	-8m LWS
	b. 175m – 225m from the edge of East Berlian	-7m LWS
	c. $100m - 180m$ from the front of Mirah pier	-7m LWS
	d. 225m from the front of East Berlian Pier	-5m LWS
	e. 275m from the front of Pier	-5m LWS
5.	South Jamrud (50m from the front of Pier)	-7m LWS
6.	South Jamrud (50m from the front of Pier)	-8m LWS
В	TYPE OF CLAMSHELL DREDGER	
1.	In front of East Nilam (kade meter 100 – 300)	-9m LWS
2.	In front of East Nilam (Kade meter 300 – 900)	-9m LWS
3.	In front of Mirah Pier	-7m LWS
4.	In front of South Jamrud Pier (2,5m – 50m)	-8m LWS
5.	In front of South Jamrud (2,5m – 50m)	-10m LWS
6.	In front of West Jamrud (2,5m – 50m)	-10m LWS
7.	In front of North Jamrud (kade meter 0 – 450)	-10m LWS
8.	In front of North and West Berlian Pier (2,5m – 50m)	-9m LWS
9.	In front of East Berlian (2,5m – 50 m)	-10m LWS
С	TURNING BASIN (TYPE OF HOPPER DREDGER)	
1.	Turning Basin D = 280m (In between East and Nort Jamrud)	-10m LWS
2.	Turning Basin D = 150m (In between South Jamurd and Middle of pond)	-9m LWS

3. Literature of Dredging Project

3.1. Project Definition

A project is defined as a business / activity of complex, non-routine, limited by time, budget, resources, and performance specifications that are designed to meet the needs of consumers and have several characteristics (Lester & Lester, 2007). The characteristics of a project by lester definition include:

- 1. Having a particular purpose;
- 2. Having a point (early) and a certain point;
- 3. Involving multiple departments and professions;
- 4. Often doing something that has never been done before;
- 5. Having specific time, cost and performance requirements.

Another aspect, which is crucial in project, is scheduling. It is an important thing in a project because scheduling provides information about the timetable and progress of the project in terms of resources in the form of performance fees, labor, equipment and material as well as the duration of the project and progress plan for the project completion time (Mubarak, 2015).

3.2. Dredging Project Definition

Bray et al. (1997) explained that dredging is the removal of soil or rock underwater or from one place to another (e.g., from a riverbed or sea to other places) by using dredger (vessel or floating plant equipped with a machine, mechanically and/or hydraulically). Dredger are used for dredging the shipping lane and port basin to keep the depth and ensure the safety of the ship operations. The dredging work can be divided into two types, namely: capital dredging and maintenance dredging. The capital dredging is used to make a new port; while the maintenance dredging is used in the existing port in order to keep the depth of the port basin and shipping channel from the sedimentation (Bray, 1997).
3.2.1. Common Factors that affect the dredging project

There are several factors that can affect the dredging project. Some of the factors are classified as technical factors while the others are classified as management factors. (*Dredging for Navigation: A handbook for port and waterways authorities,* 1991):

- 1. Technical Factors
 - a. The existence of wrecks. Wrecks are usually the remainders of a ship or any others object found in the sea (floating, submerged or sunken). Large wrecks usually floating and can be mapped. Small ones often move freely in the water and hard to detect with the bare eyes. A surveillance by magnetometer or side scans sonar detection will be able to detect the wrecks that are not visible and not found in nautical maps. The inclusions of possible wrecks in a dredging project is important to be taken into consideration in the planning due to potential increase in the cost and safety measures required during the operations.
 - b. The ruins / debris

Ruins/ debris is any object that is floating in the sea that are not part of a ship. Ruins/Debris can lead to many disadvantages in the use of hydraulic dredgers. The problems of ruins/debris can be solved by using the tool grabs, a clause shape mechanism that can be install as an extention of the dredger.

c. The content of the base.

This problem occurs in dredging tool buckets, grabs, hopper, wheel cutters and pipeline. The high density of the soil can cause the high intensity of adhesion (stickiness). As a result, the effectiveness of the tool is disrupted, it reduces the work productivity and would be problematic in the employment contract.

d. Coating base.

Lack of soil density, gas content in it and the tendency of large waves can cause difficulties in the dredging work.

- 2. Management Factor
 - a. The condition of the contract agreement

The contract agreement related to the knowledge and ability to execute the work in the use of the latest technological tools. Technology evolves over time and the implementing work should be able to cope with the technical development in the field of dredging.

b. Methods of measurement and certification work.

The executor of the dredging work should be professional and trustworthy. Professional means that the executor must be certified and knowledgeable in the dredging works. He/she has to obtain sufficient experience of the dynamic challenges in the field.

c. Rules agreed on payments.

Every job, have a system of payment varying according to the agreement between the operators and users dredging services. Therefore, the work rules that have been agreed by both parties must be complied with and implemented as a whole.

d. The relationship between the employer and the contractor.

Their proper relationship that should exist between the employer and the contractor as the executor will have an impact both on the implementation of work.

3.2.2. Stages of The Dredging Planning

The initial planning phase of the dredging project is to make a characterization of the area to be dredged and conduct an in-depth analysis of the dredging, the amount material disposal, and the amount of reclamation (Tsinker, 2004). As for the general planning of the dredging project started with conducting investigation of soil properties (material) at the dredging site, continued by estimating the amount of material to be dredged sediment by firstly measuring the added through hydrograph survey. The next stage is to decide the type, capacity, and the quantity of the dredger to be used by considering the the characteristic of the disposal place and the location.

Figure 6. Flowchart of dredging activities planning procedure

According to Huston (1970), in order to support the investigation process of sedimentation either soil or stone, it requires the measurement of submerged land through hydrography, taking soundings before and after dredging. The site investigations also include hydrography, side-scan sonar surveys, sub bottom profile surveys, geotechnical investigations and laboratory testing work based on soil boring. The geotechnical data are used to evaluate the dredging characteristic of the material and to assess its impact related to other purposes such as reclamation or environmental concern. Historical bathymetric data and dredging records should also be reviewed, where available, to help assess the local sedimentation rates and estimate long-term maintenance dredging requirements. The geotechnical data are used to evaluate the dredging characteristic of the material and to evaluate its performance as fill for reclamation or as dredge spoil. This analysis may be supplemented by hydrodynamic and sedimentation transport numerical model studies to evaluate future deposition pattern and rates (Tsinker, 2004). Hydrograph survey is usually conducted by the contractor as the executor of the work. While the owner also performed similar work through a civil engineer consultant in order to confirm the finding by the contractor (Huston, 1970).

The calculation of dredging quantities is an iterative process related to optimization of the overall of a port and its breakwater system. Sometimes the layout and numbers estimates cannot be finalized until the later stages of the design effort, pending the results of physical hydraulic model tests of the port performance and navigation simulation studies to confirm the design of the entrance channel and turning basin. In calculating the dredging quantities, an allowance should be included to account for over dredging beyond the nominal design dredge depth. This can be a critical component of the total dredge volume for dredging in relatively deep water where only a thin layer of sediment needs to be removed (Tsinker, 2004).

According to the Bray et al. (1997), hydrography or sounding on dredging activities should be conducted in four stages of processing, i.e.,

1. Pre-dredge Sounding

An initial survey undertaken prior to the dredging work is held, and the resulting data is used as the basis for calculating the volume of material to be dredged in the intended location.

2. Check Sounding

Check sounding is a measurement or survey to see the results from the temporary work areas that have been dredged and the resulting data is used to control implementation of the dredging at the site. Determination of the measurement time period depends on the duration of the project and the type of dredgers are used. As for the term of analysis carried out regularly either twice a month or a maximum of four times a month as needed.

3. Progress Sounding

Progress sounding is conducted to be reported to the owner and as the requirements for a contractor in billing. In sounding progress is made in accordance with the need for billing. During the implementation of the progress sounding, there is the owner come to accompany.

4. Final Sounding

Final sounding is conducted by the project owner with the companion of the contractor.

3.3. Dredging Equipment

Generally, the selection of dredging equipment for the implementation of certain projects is based on the availability of fleet of dredgers owned by the contractor as a candidate for the project implementation (Pullar & Hughes, 2009). Therefore, it is not easy to decide the dredging equipment in ideal way, as desired by the project owner.

There are several aspect that need to be consider by the contractor in term of he contract, content and layout of the dredging project.

- a) The effectiveness of dredging equipment adapted to the type of sedimentation.
- b) The ability of dredging equipment to transport sediment from the dredging area to the disposal site.
- c) The flexibility in the work of dredging related to the weather conditions at the project site.
- d) Considerations of environmental aspect at the disposal site.
- e) The efficiency of the project.

According to Bray (1997), the selection of the dredgers to be used in dredging involves many aspects such as the type and characteristics of the dredger itself, the characteristics of the soil / rock from the bottom of the sea / river, the amount of soil / rock being dredged, the condition of the sea / river, weather conditions, ship traffic in waters, bathymetry, and the period of implementation of the dredging. Herbich, (1992) explains that, in general, the dredgers are divided into two groups: the type of hydraulic and mechanical, in which the dredging work at the port and waterways is pretty much involved. As for the type of hydraulic dredgers, there are hopper dredgers, cutter head, dustpan, sidecasting, and suction dredgers that use centrifugal pumps to pump such a dredged sedimentation and slurry (water mixture) and removes the dredged sedimentation from port and waterways. Meanwhile, for the type of mechanical dredgers, there are a bucket, grapple (barge equipped with "clamshell" bucket), dragline, bucket-leader, backhoe, and dipper dredgers (Herbich,

1992). In addition, there are many others of other types of dredgers that refers to the workings or type of dredged material.

Figure 7. Classification of types dredgers (adapted from Tsinker, 2004)

According to the method of excavation / demolition material, the dredger is divided into two types (Herbich, 1992).

1. Mechanical Dredger

Mechanical means the works are done by way of digging or cutting. Excavation work will be done by using a bucket with many different forms. The effectiveness of these operations depends on the power that is channeled to the bucket / blade as well as the shape of the outskirts / blade bucket stuck on the ground. Due to the large forced needed to cope with the rigors of the land, there are several type of the bucket that are used, such as ;

- a) Shovel shape at the Dipper Dredger;
- b) Shape backhoe on Dredger;
- c) Form chain on Dredger bucket;
- d) Shape grab on Dredger;
- e) Shape of a wheel on a wheel excavator;
- f) Form drag on Dragline.

Job cuts are usually carried out by using a blade by way of "slicing" in order for the results of the excavation to be separated from the original soil mass.

2. Hydraulic Dredger

A hydraulic dredger is operated using using water power. The force from the water jet can be directed toward the dredgers or away from the dredgers. The water jet will take the mixture of water and soil which is drawn by the dredger. The process of soil lifted hydraulically / pneumatic is with a centrifugal pump, with a jet pump, by utilizing the air (airlift) and with pump seabed. Centrifugal pumps used to raise (vertical) and "transport" (horizontal). Characteristics of the selected pump should be adjusted to the workload. The dredging pump is not much different from the large water pumps, only impeller designed so as to allow chunks rather large to pass them. Pump-jet typically is a tool system that uses centrifugal pumps. Jet-water at high pressure leads into the suction pipe. Jet-water flow with a mixture of water and soil into a suction pipe and tube venture-energy jet of water is converted into a "high-pressure water" (pressure head). The dredger effectiveness depends on the speed of the water jet and the characteristics of the material. Suction head shape assortment, includes:

- a) Head-suction-flat as the Suction Dredger;
- b) Ship-pull like the Trailing Suction Hopper Dredger;
- c) Dust pan head as in Dustpan Dredger.

Sometimes ship-pull dust pan head was equipped with a jet of water to help the "exploitation" easier.

3.3.1. Trailing suction hopper dredgers (TSHD)

According to De Heer (1989), TSHDs are self-propelled vessels using a trailing arm to move along the water floor to collect material, simply described as having capabilities such as excavate, transport, and discharge seabed material. The record of the usage of TSHD can be traced back to the Dutch dredger which was used for the first time during the construction of the New Waterway, the new entrance to Rotterdam port (1878 – 1880). A typical hopper dredge is illustrated in Figure 9. As a category of the hydraulic dredger, the hopper dredgers utilize a centrifugal pump to entrain sediment in water for removal and transport. When the vessel is above the desired dredge site; the dragarms are lowered from the side until the draghead rests on the water floor and then the centrifugal pump are energized. In this stage, the vessel is moving forward slowly which is typically to two knots to allow the water to flow in the draghead and up to the dragarms. The water in the draghead then begins to erode the sediment, and the slurry moves up in the dragarm and achieves a certain threshold of material content. Next, physically, the dredging material is a combination of water and sediment is also known as slurry, and the slurry is kept in the hopper section of the ship.

Tsinker (2004) described that the dredging is done by hydraulic dredger fleet TSHD or other types sedimentation with composition solids concentration is 20% and the remaining 80% is water. Dragheads that relies on the erosive flow of water is commonly used more than those that are equipped with water jets or mechanical scrapers to break harder materials. Once the capacity of the slurry in the hopper reaches the between 750 to 10,000 cubic meters (1,000 to 13,000 cubic yards), a maintenance work need to be done to clear the sedimentations that have been attached to the inner side of the suction pipe (Bray et al., 1997).

In order to maximize the concentration of sediment in the bin hopper, sometimes it is possible to continue loading hopper over the intended times to initially fill with slurry mixture. However, at the time the sediment have reached the maximum of the bin the pumps have to be stopped in order to prevent the overflow of sediment back into the water Bray et al. (1997). The practice in the field, will be different from one location to another based on the existing existing government regulations and the nature of the sediment.

Once the hopper is full, the dragarms are lifted out of the seabed. The dredger will then empty the hopper at the disposal site using a disposing mechanism. Some dredgers have a split hull design. The two hull sections hinged along the centerline and split apart by hydraulic power to open the underside of the hull and unload the hopper quickly. A shown in Figure 8, the full cycle of TSHD after which the dredged sediment is dumped on landfill sites and back again to its original location to return dredging again and repeat all the stages of the cycle sail, load, sail, and unload. This can simply be described as the production cycle. The production cycle of THSD depends on the specifications and site characteristics. The cycle can last for less than an hour, up to several hours.

Hopper dredger or TSHD are commonly used for maintenance dredging which is to remove the accumulated material from the navigation channels that have previously been dredged (De Heer, 1989). The reason is for this is that the draghead is very effective for less hard material. Self-propulsion is another unique part of the hopper dredge because it allows easy navigation, maneuvering, and traffic avoidance. Moreover, it can eliminate most of the mobilization/demobilization costs related to other dredgers such as cutter-suction, mechanical bucket or dipper-types that can require tow services to get to a project site, and as well as other miscellaneous support for vessels during operation.

Figure 8. Operation cycle of trailing suction hopper dredger (Adapted from Hollinberger, 2010)

Figure 9. Typical characteristics components of trailing suction hopper dredger (Adapted from Agerschou, 2004)

3.3.2. Estimation production of TSHD

Production of a dredger can be estimated through a variety of ways depending on the types of dredgers used (Adair, 2005). The terms of productivity have several variations of understanding. As for the production, which takes into sub-cycle dredgers as output per hour is commonly known by the nominal theoretical production (P_{nom}) which expressed the amount of productivity in the technical specification documents in this respect is the capacity hopper. However, in the execution of dredging this production could not be achieved because there are some external influences. Therefore, corrective measures are required regarding this production, which can represent actual performance. Further, a simple understanding of the productivity hopper dredger can be interpreted as follows;

$$\max_{\text{max}} \frac{\text{Total load}}{\text{Total cycle time}}$$
(1)

Where the total load is the capacity of the hopper dredger and the total cycle time is the time in one cycle of dredging activity (Bray, 1997). In addition, Wowtschke (2016) described where the components total load can be obtained from the calculation of the multiplication of the C_H or the maximum capacity of the hopper dredger which is expressed in cubic meters then multiplied by f_e or proportion factor of the hopper filled by the sediment, which is further divided by the result of multiplying B or bulking factor with t_{load} , t_{turn} , t_{sail} , and t_d which denotes the discrepancies component of the dredging cycle and is expressed in hours. So that now the estimates of productivity dredger can be defined to be;

$$\max \frac{f_{e}}{t_{load} t_{turn} t_{sail} t_{d}}$$
(2)

where P_{max} means maximum productivity with the circumstances under ideal conditions. The bulking factors are described by Bray et al. (1997) as output or productivity in this regard is defined as the volume of in situ soil dredged within a specified period. The dredging material will be changed during the process of

dredging and transportation to be placed on the dumping area (dredging cycle). The changes are caused by natural factors such as the material shrinkage due to loss of the water component and void. In other words, the dry density of dredging material is increased from its previous condition. So, in the end, this form of further improvement is expressed as a ratio or a comparison of the two volumes. Table 9 shows the typical variation of the value used in the calculation of the reduction, including types of hydraulic dredgers whose level of bulking factors also varies depending on the density of dredging material.

Soil type	Bulking factor, B
Hard rock (blasted)	1.50 - 2.0
Medium rock (blasted)	1.40 - 1.80
Soft rock (blasted)	1.25 - 1.40
Gravel, hardpacked	1.35
Gravel, loose	1.1
Sand, hardpacked	1.25 - 1.35
Sand, medium soft to hard	1.15 - 1.25
Sand, soft	1.05 - 1.15
Silts, freshly deposited	1.00 - 1.10
Silts, consolidated	1.10 - 1.40
Clay, very hard	1.15 - 1.25
Clay, medium soft to hard	1.10 - 1.15
Clay, soft	1.00 - 1.10
Sand/gravel/clay mixtures	1.15 - 1.35

types when excavated by mechanical dredger

Table 9. Bulking factor, B, for various soil

Hollinberger (2010) explained that the loading time, t_{load} , is a function of time to process the pump flow rate into the hopper capacity which is then expressed as productivity where it depends on the type of dredging material concentration. Loading time in general is by pumping continuously during the period 10 to 20 minutes will fill the capacity of the hopper (Bray, 1997). Wowtschke (2016) has described that the turning time in hours (t_{turn} , is the total time required to turning the dredge in the process of loading material which is expressed by multiplying a

number of turns and the time needed for the dredge to make a turn. Further, the complexity of the conditions of environmental dredging projects such as the size of the area of dredging and soil conditions and other factors will require more than one turn and in the end would increase non-productive time work (Bray, 1997). Sailing time, t_{sail} , is the cycle time for dredgers to sail from location of the dredging project to the dumping area and back to the starting place (Wowtschke, 2016). Finally, the time required by the dredger to dump the dredging materials is incorporated; In addition, it also depends on the whether the method used as the TSHD uses bottom-dumped, then the default t_d is 0.1 hrs.

However, in the execution of dredging there are times when the ideal situation is difficult to achieve continuously which includes the operational efficiency of the crew, the traffic around the project site and, the weather and the condition of machinery (Bray, 1997). So, it is no longer as it had been expected. Thus, it is further expressed by Bray et al. (1997), the real productivity theory is defined by including all of these components as the reduction factor as described below;

$$\max f_d f_o f_b \tag{3}$$

Where P is the real production expressed in cubic meters. The delay factor (f_d) is the reduction factor of productivity dredger due to bad weather and obstructions in the maritime traffic. Furthermore, f_d described by the total available working time is reduced by total time lost because of the delay (due to maritime traffic obstruction and weather), So it can be expressed by the following equation;

$$f_d = \frac{\text{Total working time available time lost due to traffic during working hours}}{\text{Total working time available}}$$
 (4)

Then further, operational factors (f_0) is the reduction factor due to the inefficiency of the crew and the project management. The f_0 determined by looking at the degree of expertise of the crew itself as can be seen from Table 10.

Management	Crew rating					
rating	Poor	Mediocare	Average	Good	Very good	
Very good	0.67	0.73	0.78	0.84	0.9	
Good	0.65	0.71	0.77	0.82	0.88	
Average	0.64	0.69	0.75	0.8	0.86	
Mediocare	0.62	0.67	0.73	0.79	0.84	
Poor	0.6	0.65	0.71	0.77	0.82	

Table 10. Operational factor, f_o for given personal ratings (valid for good climate)

The mechanical breakdown factor (f_b) is the reduction factor due to the level of failure or damage which cannot be avoided from the equipment that leads to a work stoppage. Theoretically, the machine has been used continuously, which will require good maintenance periodically so that the machine can still work well. However, after several years of damage, this would occur due to wear and tear and this cannot be unavoidable and if damage occurs, then productivity will decreases (Bray, 1997). De Heer et al. (1989) explained that the f_b was defined by calculating the age level of dredgers, which will continuously fall by 1% per year (after the first 5 years of the new age), down to 0.85 before overhaul (typically 20 years).

3.3.3. Grab Dredger / Clamshell

According to Bray et al. (1997), there are five classifications of mechanical dredgers. A backhoe dredger is the one where the backhoe is attached to the barge or vessel to dredger the soil. A dipper dredger uses a rigid arm with a bucket to cut through the sediment. A bucket ladder is the one that uses a chain of buckets on a belt to dredge the soil. The dragline dredge puts the bucket in the sediment and drags the bucket back toward the vessel. Lastly, the grabber dredger uses a bottom opening bucket at the end of a crane.

Among all these mechanical dredgers, the grabber dredger is the most common type, and it is mainly used in North America. De Heer (1989) mentioned that grabber dredger is well used for mining purposes in the Far East. Bray et al. (1997) pointed out two types of grabber dredgers, which are the stationary grab dredger or dump dredger, which disposes its dredged sediments into hoppers alongside, and a self-

propelled grab dredger, which has its own hoppers or barge. Both kinds of these grabber dredgers are the same in a sense that they use grab to excavate the sediment, but the difference is that they have a different method of transportation.

The clamshell is the most common form of grab bucket. A two-sided bucket is dropped into the bottom of the water so that it enters the soil. This is crucial because if the edges of the bucket do not penetrate the soil correctly, the bucket will get empty soil when the edges close. Two wires are used in the dredging method, the hoist wire and the closing wire. The hoist wire is used to move the wire up and down, while the closing wire is used to close the bucket. It should be noted that bucket size is an important characteristic in the mechanical dredgers. Adair (2005), provides a description (Figure 10) of the different bucket sizes used in the United States in 2003. From Figure 10, it is very clear that the size of the bucket 15 yd³ is the most frequently used. There are also several more sizes between 15 and 30 yd³ (11 and 23m³). A few bucket sizes are bigger than 30yd³ (23m³). The largest bucket is 50 yd³.

Figure 10. Distribution of bucket sizes in the united states, multiply by 0.765 for m³ (Source Adair, 2005)

Figure 11 shows a mechanical clamshell dredger in the port basin of the port of Tanjung Perak Surabaya. In the picture, it can be seen that there are many principal components of the mechanical dredger. The dredger is a crane-like structure. In the dredging process, the crane puts the buckets above the desired location and lowers the bucket into the bottom of the waterway. When the bucket closes, it collects sediment. The crane raises the bucket out of the water and positions it over the barge. The bucket is opened, and then the dredged material is discharged in the barge. This cycle is then repeated until the desired depth is achieved.

Figure 11. Mechanical dredge in port of Tanjung Perak Indonesia, 2012

Figure 13 shows the different parts on a clamshell bucket. The hoist wire is used to support the weight of the clamshell and the sediment. It is used to pull the bucket up and down. In the dredging operation, the bucket is lowered into the sediment. The cutting edges of the bucket cut the sediment, and the bucket is then closed. Next, the bucket is pulled out of the water. In generally Bray et al. (1997), explained that the production cycle the grab dredger includes a swing to mark or the bucket is moved

toward the point of dredger, which will depend on the angle of the swing. Then the grab is lowered or the grab bucket is directed downwards at an open position, so it will depend on the type of material dredged. Then, the grab or bucket is raised and reappointed in the closed position with contents inside; it depends on the speed of the lift. After that, the swing to discharge or grab is directed toward the hopper, and this will depend on the angle of the swing, and at the end it is discharged.

Figure 12. Operation cycle of grab dredger (Source Bray et al., 1997)

On the left side (see Figure 13) the clamshell is in the closed position and in the middle clamshell is a simple open bucket. The bucket is in the open position when it is dropped into the sediment. When it is lifted from the water, it has to be closed to retain the sediment. The clamshell is believed to be best soft sediments and in a difficult-to-access locations (Tsinker, 2004). Because the clamshell dredge is placed on a barge, it is capable of reaching many locations including difficult locations. However, because the clamshell uses mechanical cable, the length of the cable is the only thing that limits the depth of the operation.

Figure 13. Clamshell bucket in operation (adapted from De Heer, 1989)

3.3.4. Estimation production of grab clamshell

The productivity of a clamshell grab dredger can be calculated by first determining several contributing factors in order to represent the actual performance of the dredgers. Bray et al. (1997) have simplified the calculation by providing a curve fitting to determine a nominal production (P_{nom}) which has been adjusted to the bucket fill factor or modification factor (f_m) and the basis of a productive unit (U_b) which represents the capacity of the bucket (C), which should be adjusted to the digability of the soil.

Table 11. Relationship between the type of

 grab bucket crane with dredged soil types

Bucket Type	Capacity
Mud	1.00 C
Sand/clay	0.72 C
Stones/rock	0.36 C

Further, the clamshell grab is not working by using the power of a heavy grab bucket; this is different from other types of mechanical dredger that works by using the power of the dredger itself. This is the reason why the bucket fill factor or modification factor (f_m) is lower than that of the other dredgers. Bray et al. (1997) has provided such factors in Table 12:

Table 12. Grab dredger,	modification	factor,	f _m ,
---------------------------------	--------------	---------	------------------

for various soil types and bucket sizes

S all trma	Modification factor, f_m		
Son type	2 m^3 bucket	4 m ³ bucket	
Mud	0.75	0.80	
Loose sand	0.70	0.75	
Compact sand	0.60	0.70	
Sand and Clay	0.50	0.60	
Stones	0.35	0.45	
Broken rock (Pre-treated)	0.20	0.30	

Once the grab bucket capacity has been calculated, and the bucket fill factors are determined, they can be used as a supporting parameter in determining the nominal production (P_{nom}) through the following curve fitting;

Figure 14. Grab clamshell: nominal output,P_{nom}, for various bucket sizes and dredger characteristics (Source Bray et al., 1997)

Furthermore, nominal production could be delayed due to several reasons such as the time required to advancing the dredger (f_a). Therefore, Bray et al. (1997) has defined this to be as follows;

$$f_a = \frac{1}{1 - \frac{t_a \times p_{nom}}{z}}$$
(5)

In the equation (5) above, A is the average area dredge, and z is the average thickness of the material, while tea is the time required (hours) to advance to the next dredging position and B is the bulking factor that is dependent on the sediment type and water content (see Table 12). Another delayed reason is the time for the changing hopper barge (f_h) and this is expressed in the following;

$$f_{h} = \frac{1}{1 - \frac{t_{h} x f_{a} x \mod x}{1 - \frac{t_{h} x f_{a} x \mod x}}}}$$
(6)

All of the parameters in equation (5) above are the same as in equation (6) by the addition of t_h is the time required (hours) to change hoppers, and the hopper capacity H in meters. After all the delay factors are (f_a, f_h) has been taken into account, then the maximum potential output (P_{max}) can be calculated using a nominal production (P_{nom}) as supporting parameters.

$$\max \quad f_a x f_h x \quad \text{nom} \tag{7}$$

As already described in the equation (2) that P_{max} means maximum productivity with the circumstances under ideal conditions. Therefore, it should once again be corrected by considering the reduction factor, such as equipment malfunction, and the level of expertise the crew in order to find real productivity theory (P) that represent the actual conditions in the field. Thus, the Table 10 shows operational factors (f_o) and mechanical breakdown factors (f_b) to be considered, so that the calculation is as follows;

$$f_o x f_b x_{max}$$
 (8)

Overall, this method works well, but only for small-sized buckets Therefore, another approach for larger bucket sizes is also needed. De Heer (1989) has another approach in calculating production of the clamshell grab with different supporting parameters. As for the calculations, it is as follows;

$$\begin{array}{c} \text{nom} \quad \frac{\text{x 3600}}{\text{T}_{\text{cycle}} \text{ in sec.}} \end{array} \tag{9}$$

Where C is the bucket capacity, T_{cycle} is the total time needed to dredge of sedimentation until emptied and moved to another location to backfill the bucket to be emptied again (Adair, 2004). De Heer (1989) explains that for dredging depths up to 10 meters with a slewing angle of the crane by 180 degrees, the cycle time may be used for 90 seconds.

Furthermore, Adair (2004) has developed a calculation equation of bucket fill factor (f_m) for different size bucket adapted to various types of soil. as for hard soil sediment, or stone types, the calculation can as follows;

$$f_m = 0.1443 n = 0.25$$
 (10)

Where Ln is the natural logarithm, which is the formula syntax in the calculation of aid programs such as Microsoft Excel, C is the capacity of the bucket, which is expressed in cubic meters. The bucket fill factor (f_m) for other soil types are summarized in Table 13;

Type of Soil	Range of bucket size (m^3)	Range of bucket fill factor	f_m
Mud	0 - 50	0.6 - 1	0.0474Ln(C)+0.7255
Loose Sand	0 - 50	0.6 - 1	0.0614Ln(C)+0.6607
Compact Sand	0 - 50	0.4 - 1	0.0933Ln(C)+0.5517
Sand and Clay	0 - 50	0.4 - 1	0.1228Ln(C)+0.4214
Stones	0 - 50	0 - 1	0.1443Ln(C)+0.25
Broken Rock	0 - 50	0 - 1	0.1443Ln(C)+0.1

Table 13. Summary of the grab clamshell, variety of bucket fill factor, f_m

Meanwhile, with the approach to the size of a large bucket (Adair, 2004), the nominal production (P_{nom}) in equation (9) is developed as follows;

$$nom \quad \frac{3600}{T_{cycle}} f_{m} \tag{11}$$

3.4. Duration of the project

The productivity of the dredgers that have been obtained through the calculation of actual production was decisive in the proper length of the project (ideal) or known as productive duration. A mistake in the estimated productive duration (overestimation) is a major cause of failure of a project (Turner, 1986). Ultimately, the actual production capacity theory will then be used as a basis for determining the approximate duration of the remaining projects, including the duration of the delay.

3.5. Dredging Cost Estimation

The productivity of each dredger, which has been obtained by calculating the actual production theory, will then be used in conjunction with a variety of price assumptions in order to estimate the cost of the dredging project alternatives. Based on the regulation of the Ministry of Transportation of the Republic of Indonesia No. KM. 70, 2010, the cost of dredging is broadly divided into two major components, namely the cost of operations and the cost of mobilization/demobilization. In addition, this ministerial regulation has also set the format of the calculation of each component cost estimates ranging from operating costs, mobilization/demobilization,

crew and labor, fuel and lubricants, repair and maintenance, depreciation and insurance. In the case of the dredging operations in Indonesia, the authority has to abide to positive law of Indonesia. The considerations and additional information that are presented in this research are intended for comparative study and informational literature review.

3.5.1. Operating Cost

In the calculation of the cost of the dredging operation, it is important to know in advance the duration of the project. The real production level of dredgers are expressed in cubic meters per hour, and the volume to be dredged by each type of dredger. The cost of the dredging operation, it may consist of several factors such as the crew of the dredger, fuel, lubricants, and routine maintenance repairs, insurance, depreciation and profit (Tsinker, 2004). Then the cost of the various factors above is summed to obtain the operating costs.

3.5.2. Mobilization and Demobilization

Dredging costs of mobilization and demobilization depends on dredging fleet transportation costs to and from the project site. In fact, it is quite difficult to estimate the cost due to several factors that are not easy to be ascertained such as function of the distance itself, the crew and the lost cost resulting from the discontinuation of temporary to set-up. In addition, according to Randal (2000) in reality, no two dredgers that have to distance away to and from the project site are exactly the same.

3.5.3. Crew and Labor

In operating either the dredging operation and the operation of sailing dredgers, a reliable crew is necessary. The crew is a vital factor in a dredging project. Further, the type of crew was distinguished by its function in accordance with job placement, including personal deck and engineering, as well as a special operator for dredging.

As for the need for the number of crew, this depends on the type of dredger and the size of the vessel, automation equipment, and trip duration.

3.5.4. Fuel and Lubricants

The cost of fuel is very volatile in the marketplace. In addition, the cost factor has a fairly large portion of the cost calculation components and it is sensitive because it follows other factors such as distance and, the engine power to dredge and others. So it is necessary to limit well for the expenses of these factors. Furthermore, many different types of the machines, which work on dredgers and ancillary equipment in any dredging will cause the consumption of lubricant to be large as well. Generally argued by Tsinker (2004), in practice, the requirement for lubricant is calculated at 10% of the total cost of fuel.

3.5.5. Maintenance and Repair

Bray et al. (1997), described that by its nature maintenance is divided into two categories: routine maintenance and repairs. Tsinker (2004), however, argues that all necessary repairs during the duration of the project also included in the category of maintenance, such as replacing worn engine parts, damaged pipes, hoses, and electrical consumables. Lubrication of equipment is part of the maintenance repairs, which are minor maintenance. In addition, the major repair is anything that does not occur within the duration of the project but is still included in the contract with a small percentage of the actual maintenance costs. As to the daily cost of minor and major repairs for a trailing suction hopper dredge can be found by multiplying the capital cost of the dredge by 0.000135 and 0.000275 respectively (Bray et al., 1997).

3.5.6. Depreciation, Insurance, Overhead, Bonding and Profit

Depreciation is the reduction in the value of physical properties (dredger) over time of use and depends on the fiscal policy of the owner. According to Randall (2004) regarding the insurance of the dredger, an annual premium of 2.5 percent of insured plant value means that the daily insurance cost is the capital cost of the dredge multiplied by 0.025 and divided by the number of working days per year. Meanwhile, overhead is nine percent of the working costs already established to this point. Furthermore, Belesimo (2000), advises that project bonding may cost between 1.0 and 1.5 percent of the working cost. On the basis of these descriptions, overhead and bonding can be combined to an additional ten percent on top of the determined operating costs. Eventually, each individual contractor will determine its own profits in accordance with the type of work.

3.5.7. Additional Costs

Additional operational costs in the dredging project are reasonable as long as they do not fall into any of the above cost categories. Variations of these costs includes site surveys, environmental protection devices, and other miscellaneous items (Wowtschuk, 2016).

4. Data processing and analysis

In the dredger fleet for the dredging works of the port basin at Tanjung Perak Port, most of the dredgers will be procured domestically. The following Table 14 up to Table 17 gives the list of active dredgers owned and operated by PT RUKINDO, a state-owned dredging company.

		Vaar	Length	Moulded	Moulded	Loaded	Dredging	Hopper
No.	Name of Ship	r ear	Overall	Breadth	Depth	Draught	Depth	Capacity
		Duin	(m)	(m)	(m)	(m)	(m)	(m^{3})
1	Bali II	1993	124.4	18.04	8.05	7	30	5,000
2	Aru II	1994	124.4	18.04	8.05	7	30	5,000
3	Irian Jaya	1981	109.88	18.04	8.05	6.33	20	4,000
4	Kalimantan II	1983	109.88	18.04	8.05	6.33	20	4,000
5	Sulawesi II	1974	92.5	16	8	7.33	20	2,900
6	Betuah	1978	92	16	8	7.33	20	2,900
7	Seram	1981	92	16	8	7.3	20	2,900
8	Halmahera	1983	92.5	16	8	7.33	20	2,900
9	Timor	1981	95	18.4	7	3	20	2,000
10	Banda	198	71.1	14	4.9	4.05	14	1,000
11	Natuna	1984	71.1	14	4.9	4.05	14	1,000

Table 14. List of specification dredger types TSHD owned by PT Rukindo

Table 15. List of specification dredger types clamshell owned by PT Rukindo

No.	Name of Ship	Year Built	Length Overall (m)	Moulded Breadth (m)	Moulded Depth (m)	Grab Capacity (m ³)	Dredging Depth (m)	Dredging Capacity (m ³)
1	Danau Laut Tawar	1974	54	23	4.5	20	25	-
2	Batur	1984	28	13	2.6	5.5	20	300
3	Ranau	1984	28	13	2.6	5.5	20	300
4	Poso	1984	28	13	2.6	5.5	20	300
5	Tondano	1984	28	13	2.6	5.5	20	300

No	Name of Ship	Year Built	Length Overall (m)	Moulded Breadth (m)	Moulded Depth (m)	Loaded Draught (m)	Dredging Depth (m)	Dredging Capacity (m ³ /hr)
1	Batang Anai	1994	93	18.5	7	5	24	1,200
2	Kapuas 30	1976	43.17	13.41	2.9	1.9	17.68	600

Table 16. List of specification dredger types cutter suction owned by PT Rukindo

Source: Website of PT (Persero) Pengerukan Indonesia, www.rukindo.co.id (2010).

The clamshell dredgers (Non-Hopper) is operated in the radius of 2.5 meters up to five meters from the edge of the wharf, while TSHD is operated beyond the limit of the clamshell dredgers.

No.	Name of Ship	Hopper Capacity (m ³)	Speed (Knots)	LOA (m)	LBP (m)	Moulded Breadth	Height (m)
1	SB Seroja	500	5	46.58	44.52	9.75	3.66
2	SB 54	500	5	50.3	49.1	9.5	3.75
					Main	Donth	
No.	Name of Ship	Draught (m)	Gross Tonnage (Tons)	Nett Tonnage	Engine (HP)	Dredger (m)	Producti on Year
No.	Name of Ship SB Seroja	Draught (m)	Gross Tonnage (Tons) 518	Nett Tonnage 156	Engine (HP) 2 x 480	Depth Dredger (m) 10	Producti on Year 1985

Table 17. Auxiliary ship for dredgers owned by PT Rukindo

With regard to the types of soil in the dredging area of the port of Tanjung Perak, samples have been taken for laboratory test result (Appendix A, Table A-9). The result indicated that the silt content in the soil samples is 60%, sand content 5%, and clay content 35% with no evidence of gravel.

The grain size distribution test which was done in the laboratory using the soil samples taken coordinates 07°11.968'S and 112°43.722'E, shows that the soil predominantly consist of granules silts and clays.

Table 18. Predominant Soil Type

Granules soil More than 35% where the smooth material is more than 0.06 cm				
Granules silts and clays 65-100%.	Silt and clay, the gravel, sandy granules 35% - 65%			

Silt type or silty sand	Quick Test
Loose	$20^{0} - 22^{0}$
Dense	$25^{0} - 30^{0}$
Clay $(0^0 \text{ if saturate})$	$14^{0} - 20^{0}$

Table 19. Shear capacity for soil types

Table 18 shows that that strong value (N) of sediment in the port basin ranges from 4 s / d 10. The value indicated that the threshold for determining the dredging slope is between 1: 3 to 1: 4 (selected slope 1: 4).

4.1. Analysis of the Dredgers Productivity

At the port dredging project of Tanjung Perak in 2012, an outline of the work is divided into two which is based dredgers working on the location and amount of certain sedimentation stipulated in the employment contract. The number of as much as 907,049 m³ of the sediment is carried by the type TSHD (Kalimantan II) with a capacity of 4,000 m³ and other sediments of as much as 283,546 m³ are carried by the clamshell dredger (Tondano) with a capacity of 5.5 m³ with two ships assisted self-propelled hopper with a capacity of 500 m³. Both are existing dredgers working on dredging in the port area of Tanjung Perak. The dredged area-adjusted with the results in 2012 included the sounding depth plan.

4.2. Kalimantan II

Kalimantan II is a type of dredger Trailing Suction Hopper Dredger (TSHD) which is a type of Hydraulic dredgers (Facts About: Trailing Suction Hopper Dredgers -IADC Dredging, 2014). Productivity is calculated in units of cubic meters per hour by considering transport capacity, sailing time, discharging time, unloading time, and several other reduction factors that can influence. However, in the calculation of this analysis, all the things that need to be considered in accordance with the literature review will be adjusted with the type and availability of data that have been obtained from the contractor from daily, weekly and monthly report projects. While there is a lack of data needed for this calculation, it will be overcame by assumption. To find out more whether a dredger has been working in accordance with what has been planned by the contractor in order to complete the project, a comparison of real productivity theoretical performance and the initial calculated performance by the contractor is conducted.

Table 20. Estimates TSHD dredging cycle per day

(based on estimated contractors)

No.	Dredging cycle	Time
1	Dredge	125 minutes
2	Sailed to the disposal site	72 minutes
3	Discharging	10 minutes
4	Sailed to the project site (empty condition)	60 minutes
5	Turning dredger	10 minutes
6	Number oc cycle time	277

Table 20 is the project information from the contractor, in determining the cycle time per day of TSHD, by using two pump units, then dredged material is accommodated in the hopper up to full for 125 minutes. Furthermore, when the hopper dredger is full, the pump is turned off, and the ladder lifted to be positioned on the deck, so that the ship can sail with the dredging materials to the disposal site with a time of about 72 minutes. After the dredger has arrived at the dumping site and dispose of the material by opening the bottom side of the dredger until completed and closed, this activity takes as long as 10 minutes. After the dredgers have turned and sailed back to the original location, which takes 60 minutes, they can start to perform further dredging. This is the cycle of dredging and disposal of material.

Based on the information obtained, the performance of the dredger can be determined through the calculation of productivity capacity dredgers that will be used in the project. First to determine the number of cycles (trip) in a day that can be achieved is by dividing the number of minutes in a day with the number of minutes to perform one cycle, and after the values are rounded then as many as 5 trips a day were shown, as in the following calculation;

umber of trips a dayThe amount of time in a day in minutes
Number of cycle timeumber of trips a day
$$\frac{24 \text{ hours x } 60 \text{ minutes}}{277 \text{ minutes}}$$
 5.2 5 Tr ip

Furthermore, the production capacity can be calculated by multiplying the number of trips and hopper capacity of 4,000 cubic meters, as well as the concentration of granules in a slurry of 40%, which the remaining amount of 60% is water. This is obtained through laboratory testing (in Appendix A-10) and can be described as follows;

roduction capacity The amount of trip x opper a pacity x of granules in the slurry

Then production capacity $5 \times 4000 \text{ m}^3 \times 40$ $8,000 \text{ m}^3/\text{day}$

If divided by the number of hours in the day, the production capacity is as follows;

roduction capacity
$$\frac{8\ 000\ \text{m}^3/\text{day}}{24\ \text{hours}}$$
 333.33 333 m³/hours

The above equation shows the highest production with the number of trips that can be produced where it is assumed that the dredgers are working nonstop for 24 hours without stopping. Thus, it can simply be estimated that the to further the time required by the dredger in completing the work that is equal to 113 calendar days which is obtained by dividing the amount of sediment to be dredged and production capacity in a day.

The time of execution of the dredging project under the contract is 150 calendar days. Further, if it refers to the performance of TSHD, which had been planned by the contractor, the amount of 8,000 cubic meters per day, or equal to 333 cubic meters per hour, so that they can complete the job within 113 days or ahead of the time available. However, in reality it is different because, this can be known through

daily and weekly reports that dredging work has been obtained, where up to week 17, the TSHDs are still working and there is still remaining work. This issue becomes quite interesting to explore as to how it was not achieved in accordance with what had been planned. In addition, the extent to which this can cause problems needs to be reviewed, especially from the viewpoint of IPC III as the operator of the port.

By knowing the production capacity in accordance with the design plan of work that has been determined by the contractor in the project contract documents. The next step is to figure out the real production capacity through an approach of project data available.

Table 21 is a summary of the weekly report of the project until week 17 (details in Appendix A, Table A-8), The data has provided a record of activities of the dredging cycle, either in the form of loading time, constrained time (delay), sailing time, discharging time, and number of trips. Thus, the calculation becomes easier by utilizing the availability of data. Furthermore, regarding the summary of the working time of the dredging project, the calculation parameters mentioned loading time (t_{load}), sailing time (t_{sail}), loading time (t_{load}), discharging time (t_d), and time delay (t_{delay}) and other reduction factors will be calculated as follows:

	TSHD Kalimantan II							
	Loading	Delays	Sailing	Discharging	Amount of work	Productivity (m ³)		
Week	Hour	Hour	Hour	Hour	Trip	Weekly	Cumulative	
1	9	20	42	1	5	8.000	-	
2	15	108	43	2	14	22.400	30.400	
3	27	68	69	4	23	36.800	67.200	
4	22	89	53	3	18	28.800	96.000	
5	39	30	94	5	32	51.200	147.200	
6	30	74	62	4	20	32.000	179.200	
7	44.32	18	99.75	5.5	33	52.800	232.000	
8	32.33	57.83	73.67	4.17	25	40.000	272.000	
9	45.17	6.92	109.75	6	37	59.200	331.200	
10	27.25	67.67	69.42	3.67	22	35.200	366.400	
11	21	88.08	55.75	3.17	19	30.400	396.800	
12	35	42.08	86.08	4.83	29	46.400	443.200	
13	31.5	47.67	84.17	4.67	28	44.800	488.000	
14	31.5	51.83	80.17	4.33	27	43.200	531.200	
15	42.17	11.58	108.42	6	36	57.600	588.800	
16	22.17	75.42	67.25	3.17	19	30.400	619.200	
17	9.33	133.58	23.75	1.33	8	12.800	632.000	
Total	342	601	858.17	46.83	395			
Total hr/ total trip	1.22	2.51	3.09	0.17				

Table 21. Summary of work time dredging projects by Kalimantan II

4.2.1. Loading time

Loading time (t_{load}) is obtained from the total hours of loading divided by the total number of trips in the amount of 1.22 hours.

4.2.2. Sailing time

Sailing time (t_{sail}) is obtained from the total hours of sailing divided by the total number of a sailing trip in the amount of 3.09 hours.

4.2.3. Discharging time

Discharging time (t_d) is obtained from total discharging hours divided by the total number of trips in the amount of $0.166 \approx 0.17$ hours.

4.2.4. Delay time

Delay time (t_{delay}) is time lost due to traffic, weather, and technical issues during working hour, which is obtained from the total time during the execution delayed until week 17 in the amount of 990.58 hours.

4.2.5. Delay factor

Delays need to be included in the consideration which will be adjusted with the data provided in the form of a daily report of the project. From the data, there are obstacles that led to stopped work, caused by factors including traffic, weather and other technical factors which have been represented by a total delay time (t_{delay}). In addition, total working time available until the week of the 17th amounted to 2,846 hours. Then by the using the equation number (4), delay factor into the calculation can be described as follows:

$$f_{d} = \frac{\text{Total working time available time lost due to traffic during working hours}}{\text{Total working time available}}$$
 (4)

And so:

$$f_d \quad \frac{2\ 856 \quad 990.58}{2\ 856} \quad 0.65$$

4.2.6. Operational factor

According to Bray et al. (1997), the operational factor (f_o) can be seen in Tables 10 with the assumption that the influence of good management and a good crew, obtained operational factors valued at 0.9.

4.2.7. Mechanical breakdown factor

Mechanical reduction due to an engine failure or worn is 1% per year is calculated after the first 5 years. Further, the reduction factor for ships 20 years of age is equal to 0.85 (De Heer, 1989). Based on the ship particular document for dredgers types

TSHD, where the dredger was built in 1983 and the implementation of the project started in 2012, the mechanical breakdown factors (f_b) can be calculated as follows:

 f_b 100 (year dredging project (year construction of dredgers 5 year)) 1

Then further calculations become;

$$f_b = 100 - (1983 - (2012 - 5)) 1 = 0.76$$

4.2.8. Maximum potential productivity

 P_{max} means maximum productivity with the circumstances under ideal conditions. Then, after all, the parameters required in the computation have been obtained, by the using the equation number (2), so the maximum productivity can be explained to be as follows:

$$\max \frac{f_e}{t_{load} t_{turn} t_{sail} t_d}$$
(2)

And so:

$$\max \quad \frac{4\ 000\ \text{m}^3 \ \text{x}\ 40}{1.1\ \text{x}\ 1.22\ 3.09\ 0.17} \quad 324.\ 57\ \text{m}^3/\text{hr}$$

Where the t_{turn} has been identified as part of t_{sail} with t_{load} and t_d presented in the weekly report of the project, the bulking factor (B), according to Table 10 is obtained by 1.1 then the hopper capacity (C_H) amounted to 4,000 cubic meters and the proportion of hopper filled (f_e) according to the data available (can be found in Appendix B) is 40%.

4.2.9. Real productivity

Real production (P) is a productivity which was considered as a reduction factor that obviously occurs during the dredging process. Then by using an equation number (3) it can be explained to be:

 $_{max} \quad f_d \quad f_o \quad f_b$

Consequently:

324.57 x 0.65 x 0.9 x 0.76 145.01 m³/hr

The value of 324.57 cubic meters per hour has been obtained from the calculation of P_{max} , as well as 0.65 which was obtained from the calculation of the delay factor (f_d) and 0.9 has been obtained from the calculation of operational factors (f_o) and 0.76 has been obtained from the calculation of the mechanical breakdown factor (f_b).

Based on the calculation above it can be seen that there are differences in estimates of production capacities ranging from the theoretical capacity (P_{nom}) which has been taken into account by the contractor and set forth in the employment contract that is equal to 333 cubic meters per hour. Then the value must be corrected by including parameters of working hours or cycles of dredging in order to represent the appropriate conditions by calculating P_{max} so then the results obtained amounted to 324.57 cubic meters per hour. However, P_{max} calculation applies only under ideal conditions where there is no hindrance at all. Thus the production capacity needs to be once again corrected by inserting some reduction factor in order to represent the real conditions, according to reality in projects such as the calculation of which the actual production amounted to 145.01 cubic meters per hours.

DESCRIPTION	RESULT	UNIT
Loading Time (t _{load})	1.22	hr
Sailing Time (t _{sail})	3.09	hr
Discharging Time (t _d)	0.17	hr
Total Delays Time (t _t)	990.58	hr
Buckling Factor (B)	1.1	-
Hopper Capacity (H)	4,000	m ³
Proportion of Hopper filled (f _e)	0.4	-
Delay Factor (f _d)	0.65	-
Operational Factor (f _o)	0.9	-
Mechanical Break Down Factor (f _b)	0.76	-
Maximum Potential Output (P _{max)}	324.57	m ³ per hr
Output (P _{real})	145.01	m ³ per hr

Table 22. Data entry section for Kalimantan II productivity

Table 22 is the entry of data describing the results of calculations with the excel auxiliary program where the first column to the left is a description of factors that need to found. Then, continued in the second column in the middle is the result of the calculation and the last column on the right side is the unit of each factor counted.

4.2.10. Achievement of the project duration by the existing TSHD

The amount of volume to be dredged by TSHD is as much as 907,049 cubic meters and should be completed within 150 calendar days. If work has begun on 31 July 2012, the project will end on 27th December 2012. Meanwhile, referring to the daily and weekly reports of the project until week 17 or until 25 November 2012, TSHD has been working with the dredged material of 632,000 cubic meters. Based on this explanation, so that the time is left for TSHD project is only for 33-days calendar, and still leaves the volume of work amounted to 275,049 cubic meters. Further, if viewed from the planned production capacity by the contractor in the amount of 8,000 cubic meters per day, then the dredging project is able to be completed in only 113 calendar days or finished early in week 17 or on the 20 November 2012. This is obtained by dividing the total volume to be dredged with the planned production by the contractor. However, if viewed from the real productivity theory and the project
require additional time during the 79 calendar days (or 46 calender days from 27th of December 2012); this is obtained by dividing the volume of the remaining work with real productivity theory and will be completed on 10 February 2013, of course, this is a delay in the work. Further, the explanation achievement of the time of this work can be simplified in the following illustration:

Figure 15. Timeline of dredging project by TSHD

On the other hand, apparently the result using the real productivity theory only amounted to 145.01 cubic meters per hour or approximately equivalent to 3,480.16 cubic meters per day (assuming worked nonstop for 24 hours a day). There are different estimates of production capacity significantly between the real productivity theory with the planned productivity by the contractor, in the amount of 4,519.84 cubic meters per day. This led to not achieving the production targets as planned and in the end, the project was not completed on time.

TSHD Kalimantan II								
Week	The average real production capacity		Planned produ	Difference in production capacity				
	Weekly (m ³)	Daily (m ³ /hr)	Weekly (m ³)	Daily (m ³ /hr)	Daily (m ³ /hr)			
(1)	(2)	(3)	(4) (5)		(6)			
1	8.000	48	56.000	333	286			
2	22.400	133	56.000	333	200			
3	36.800	219	56.000	333	114			
4	28.800	171	56.000	333	162			
5	51.200	305	56.000	333	29			
6	32.000	190	56.000	333	143			
7	52.800	314	56.000	333	19			
8	40.000	238	56.000	333	95			
9	59.200	352	56.000	333	(19)			
10	35.200	210	56.000	333	124			
11	30.400	181	56.000	333	152			
12	46.400	276	56.000	333	57			
13	44.800	267	56.000	333	67			
14	43.200	257	56.000	333	76			
15	57.600	343	56.000	333	(10)			
16	30.400	181	56.000	333	152			
17	12.800	76	56.000	333	257			

 Table 23. Comparisons of estimates production capacity

In the implementation of dredging is shown Table 23. The real maximum productivity, can be achieved only on week 9 and week 15 with the amount of 352 and 343 cubic meters per hour respectively. However, in average, the productivity realization as presented by the contractor data is way below the target. It can be concluded that there is a gap between the productivity planned by the contractor and the actual production per hour for existing TSHD which evantually requires additional measures related to time and capacity so that the work can be completed on time.

4.2.11. Productivity of other alternative TSHD

The previous discussion information about the number, type, and specification fleet of dredgers owned by PT Rukindo as local contractors has been given. Therefore, the next step is to analyze the productivity of other TSHD. To estimate the real productivity, data and the same factors as in the previous calculations are required, as described in Table 24:

No.	Data calculation	Result	Unit
1	Hopper Capacity (H)	adjusted	m3
2	Buckling Factor (B)	1.1	-
3	Sailing Time (t_s)	3.09	hours
4	Loading Time (t _{load})	adjusted	hours
5	Discharging Time (t_d)	adjusted	hours
6	Proportion of Hopper filled (f _e)	0.4	-
7	Delay Factor (f _d)	0.65	-
8	Operasional Factor (f _o)	0.9	_
9	Mechanical Break Down Factor (fb)	0.76	-

Table 24. Comparisonss of estimated production capacity

For simplification of the calculation, as shown in Table 24 defined points (2), (3), (6), (7), (8) and (9) are assumed to equal the values used by the calculation of TSHD Kalimantan II. Points (1) will depend on the specifications of the dredger, whereas points (4) and (5) will be put on the value of data that will be adjusted to TSHD Kalimantan II.

Further, in order to analyze all the alternatives productivity dredgers which are still of the same type as TSHD, some data from previous analyses of existing dredgers will be referenced and adapted to the capacity of other alternatives dredgers, calculation will start from the lowest-capacity hopper, namely TSHD 1000. Regarding the daily and weekly reports from the TSHD Kalimantan II, it is known that the dredger has a capacity of 4,000 cubic meters with a load time (t_{load}) of 1.22 hours, which means that the capacity TSHD 1000 is four times smaller than the existing THSD. Therefore, through the simple way of loading 1,000 cubic meters of dredging materials, it takes (t_{load}) 1.22 hours divided by 4 resulting in 0.306 hours. Whereas in terms of discharging, this will be adjusted to the previous calculation of TSHD; Therefore, it is known that the discharging time through the hopper is 0.17 hours or equal to 17 minutes per 4,000 cubic meters. So that to dispose of dredging material as much as 1,000 cubic meters will be required in discharging time (t_d) for 0.17 hours divided by 4 with a result of 0.042 hours which is equivalent to 2.5 minutes. Furthermore, parameters have been fulfilled, so the calculation of the maximum capacity (p_{max}) of TSHD 1000 could be estimated by equation (2). This is described as follows:

$$\max \frac{f_e}{t_{load} t_{turn} t_{sail} t_d}$$
(2)

Consequently:

$$\max \quad \frac{4\ 000\ \text{m}^3 \, \text{x}\ 40}{1.1\ \text{x}\ 1.22\ 0.306\ 0.042} \quad 105.75\ \text{m}^3/\text{hr}$$

While the real production capacity (P) of TSHD 1000, then by the using the equation number (2), can be calculated to be as follow:

$$\max f_d f_o f_b \tag{3}$$

Consequently:

As for the result, is a real productivity theory of TSHD 1000 amounted to 67.17 cubic meters per hour. While for other TSHDs, real productivity theory can be calculated in the same way and the results are shown in Table 25.

Na	DESCRIPTION	INIT	TSHD				
INO.	DESCRIPTION	UNIT	1000 m3	2000 m3	2900 m3	4000 m3	5000 m3
1	Hopper Capacity (H)	m ³	1000	2000	2900	4000	5000
2	Buckling Factor (B)	-	1.1	1.1	1.1	1.1	1.1
3	Sailing Time (t_s)	hr	3.09	3.09	3.09	3.09	3.09
4	Loading Time (t _{load})	hr	0.306	0.612	0.887	1.22	1.530
5	Discharging Time (t _d)	hr	0.042	0.083	0.121	0.17	0.208
6	Proportion of Hopper filled (fe)	-	0.4	0.4	0.4	0.4	0.4
7	Delay Factor (f _d)	-	0.65	0.65	0.65	0.65	0.65
8	Operasional Factor (f _o)	-	0.90	0.90	0.90	0.90	0.90
9	Mechanical Break Down Factor (f _b)	-	0.76	0.76	0.76	0.76	0.76
10	Maximum Potential Output (P _{max)}	m ³ per hr	105.75	192.08	257.26	324.57	376.52
11	Real Capacity production (P)	m ³ per hr	47.24	85.81	114.94	145.01	168.21

Table 25. Estimates of other alternative TSHD production capacity

Furthermore, the real productivity of each alternative TSHD has been obtained in accordance with the description of Table 25 and the comparison of each of productivity, is illustrated in Figure 16:

Figure 16. Comparison of other TSHD real production capacity theory

In the previous discussion, calculating the rest of the sediment to be dredged as 275,049 cubic meters divided by the remaining duration of the project (33 calendar days) resulted to 347 cubic meters per hour which is the real productivity needed to

complete the work on time. This calculation is needed to support the decision to combine two TSHDs working at different locations, which remain in the same project area.

Figure 17. Comparison of production capacity for any real TSHD alternative

A combination, which is able to produce the highest productivity, is the existing TSHD with TSHD 5000 by real productivity theory of 313.22 cubic meters per hour as shown in Figure 17. With a combination of two TSHDs, the contractor was able to complete the project on 30 December 2012. Thus, the project contract for the duration of the project deadline was on 27 December 2012, so this alternative project will only be delayed for 3 calendar days. This happened because the minimum capacity required for the acceleration of production, there was still a difference of 34.07 cubic meters per hour. More than that, this combination is the most probable alternative solution by the contractor. However, the issue of costs needed has to be considered; because the project owner, who in this case is the port, will not provide additional cost for this issue. While accelerating the achievement of the project by another alternative, TSHD combinations can be seen in Figure 18. Further, calculation can be found in the Appendix B.

Figure 18. Comparison of production capacity for any real alternative

4.2.12. Delay factor Information of TSHD

Based on the summary of daily reports for delays in the project (Appendix A, Table A-8), factors causing delays during the project implementation are classified into six factors. As for the main cause is waiting for lubricant, have led the project to lose of time of 293.42 hours or approximately 12 calendar days. In addition, other causes of repair and maintenance of engine failure amounted to 265.08 hours, or approximately 11 calendar days. In addition, there are factors such as the time of prayer and religious holidays, waiting to re-fuel, waiting to recharge freshwater, and such others as bad weather, where the four last factors accounted for 413.42 hours of lost time, or approximately 17 calendar days. As for the details, these can be seen in Table 26:

Table 26. Factors	causing	delays
-------------------	---------	--------

No		Time Delays			
NO.	NO. DESCRIPTION		Days	%	
1	Waiting for Lubricant	293.42	12.2	8.15%	
2	Repair and Maintenance of Engine Failure	265.08	11.0	7.36%	
3	The Time of Prayer & Religious Holidays	199.92	8.3	5.55%	
4	Waiting for Refueling	158.67	6.6	4.41%	
5	Waiting for Recharging of Freshwater	49.00	2.0	1.36%	
6	Bad Weather	5.83	0.2	0.16%	
	Total Time Lost	971.92	40.5	27.00%	
	Total Time Available for the Project ; 150 D	ays Calende	er		

Further, from Table 26, for the factor number one up to number five, they can be categorized as project management issues, and factor number six as external factor (weather), which had contributed to lost time, overall, a total of approximately 40.05 calendar days equal to 27% of the project duration.

4.3. Tondano

After the previous analysis of the TSHD, analysis will now be given for the type of clamshell, through the approach of real productivity theory, which has been adjusted to the conditions of the project. Bray et al. (1997) have provided data for the fill factor through the curve fitting method. Furthermore, it is also necessary to know, in advance, how contractors plan and determine the production capacity and suitability in the field. Only, then can a comparison of productivity of both approaches be conducted an alternative solution given as to when the project has the potential to be late because there is a difference in productivity plans, in reality. In the context of the analysis, the real productivity of Tondano will be adjusted by the project data that has been obtained in the form of daily and weekly project reports.

Table 27.	Estimates	grab	clamshell	dredging	cycle	per da	y
-----------	-----------	------	-----------	----------	-------	--------	---

No.	Dredging cycle	Time
1	Fill the bucket	136 minutes
2	Sailed to the disposal site	120 minutes
3	Discharging	10 minutes
4	Sailed to the project site (empty condition)	90 minutes
5	Manuevering/Turning dredger	20 minutes
6	Number of cycle time	376

(based on estimated contractors)

Table 27 presents information that shows the project from the contractor estimate of the cycle time the clamshell with a capacity of 5.5 m^3 per day. Further, Tondano disposes of dredged materials into a hopper vessel with a capacity of 500 cubic meters, which is located next to them, and it takes 136 minutes. After that, the hopper will sail to the disposal site within 120 minutes and dispose of materials from the dredging within 10 minutes. Then, it goes back again to the project site for 90 minutes and later berthing next to the side of the clamshell while waiting to go back, because in this activity there are two ships hoppers, which take turns in working for Tondano.

Based on the information from these contractors, the next performance of Tondano can be determined by calculating the capacity of clamshell dredgers that will be used in the project. The first step is to determine if the number of cycles per day is achieved by dividing the time available in a day expressed in minutes and then divided by the amount of time in one cycle. Then the number of trips per day for 3 times is obtained. The explanation is as follows:

umbe r of trips a day
$$\frac{24 \text{ hours x } 60 \text{ minutes}}{376 \text{ minutes}}$$
 3.12 3 Tr ip

The use of two hoppers by Tondano, is certainly enough to affect the amount of the resulting productivity. The planned production capacity by the contractors can be calculated by multiplying these parameters, either the number of trips generated in one cycle, the hopper capacity of 500 cubic meters, the amount of the hopper, and the level of concentration of granules in a slurry of 40%. In which the remaining amount of 60%, which was obtained through laboratory testing (Appendix A, Table A-10). This is described as follows;

roduction capacity 3 Trip x 500 m³ x 2 hopper x 80 $2,400 \text{ m}^3/\text{day}$

If divided by the number of hours in the day, the production capacity to be as follows;

roduction capacity $\frac{2 \ 400 \ \text{m3/day}}{24 \ \text{hours}} \ 100 \ \text{m}^3/\text{hours}$

The above equation shows the highest production with the number of trips that can be produced, where it is assumed that the dredgers are working nonstop for 24 hours without stopping. The performance of Tondano had been planned by the contractor in the amount of 100 cubic meters per hour, so the project could be finished within 118 days or ahead of the time available. However, in reality it is slightly different where real productivity is resulting smaller than planned by the contractor. Table 28 illustrates the known average productivity based on performance in the field.

		Clamshell	Tondano		
Week	Progress of	f work (%)	Progress of	f work (m ³)	
	%	%	m3	m3	
	Weekly	Cumulative	Weekly	Cumulative	
1	0.42%	0.42%	1.200	1.200	
2	5.64%	6.07%	16.000	17.200	
3	3.67%	9.73%	10.400	27.600	
4	3.39%	13.12%	9.600	37.200	
5	3.39%	16.51%	9.600	46.800	
6	3.81%	20.31%	10.800	57.600	
7	5.08%	25.39%	14.400	72.000	
8	4.37%	29.77%	12.400	84.400	
9	6.49%	36.26%	18.400	102.800	
10	4.94%	41.19%	14.000	116.800	
11	2.40%	43.59%	6.800	123.600	
12	3.39%	46.98%	9.600	133.200	
13	4.23%	51.21%	12.000	145.200	
14	5.36%	56.57%	15.200	160.400	
15	6.35%	62.92%	18.000	178.400	
16	5.50%	68.42%	15.600	194.000	
17	4.94%	73.36%	14.000	208.000	
Average weekly production			12235.29	m ³ /week	
Average	e daily production	1	1.748	m ³ /Day	
Average	e real production	capacity (P)	72.83	m ³ /Hour	

Table 28. Summary progress of productivity Tondano

Table 28 is a summary of productivity progress of the Tondano until week 17 by the real average production by 72.83 cubic meters per hour. However, average production is in contrast with the theoretical calculation of actual production in order to illustrate the performance of dredgers in accordance with the reality of the project. Further, it is necessary to determine the duration of the project implementation. As in the calculation of TSHD before, there are some required parameters in determining the real productivity for the clamshell as described by Bray et al. (1997) that the reduction is an important factor to consider.

4.3.1. Productive Unit

The productive unit for the grab clamshell should be modified in accordance with the digability of the soil (Bray, 1997). The type of material sedimentation in front of the wharf is stones/rock, so the according to the Table 11, the bucket capacity is considered to be equal to 2 cubic meters obtained from the multiplication of the bucket capacity of 5.5 cubic meters multiplied by a factor of digging capacity that is equal to 0.36.

4.3.2. Modification Factor

The modification factor (f_m) is for the type of sand and clay. However, there is in fact more common hard soil, which is almost like a rock, so in this case it is assumed as a rock. Soil can be adjusted with table 12 is 0.45.

4.3.3. Nominal Production

Nominal production (uninterrupted output), P_{nom} is the production capacity by dredging cycle. P_{nom} can be calculated by the curve fitting provided by Bray et al. (1997), so that by entering parameters such as bucket capacity and modification factors, P_{nom} of 85 cubic meters per hour is obtained, as described in Figure 19:

Figure 19. Grab dredger nominal output Pnom, for various bucket sizes and dredger characteristics (Source Bray et al., 1997)

4.3.4. Delay Factor

Bray et al. (1997) explained that it is important to know the delay factor due to advancing the dredger and the delay factor due to changing hoppers when they are full. Then by using the equation (5) and (6) respectively, both kinds of delay factors can be explained as is follows:

$$f_a = \frac{1}{1 - \frac{t_a \times p_{nom}}{z}}$$

Consequently:

$$f_{a} = \frac{1}{1 + \frac{0.45 \times 85}{10,000 \times 1}} = 0.996$$

While f_h can be calculated as is follow:

$$f_{h} = \frac{1}{1 - \frac{t_{h} x f_{a} x_{nom} x}{1 - \frac{t_{h} x f_{a} x_{nom} x}{1 - \frac{t_{h} x f_{a} x_{nom} x}{1 - \frac{t_{h} x f_{a} x_{nom} x}}}$$
(6)

And so:

$$f_{h} = \frac{1}{1 - \frac{1 \times 0.996 \times 85 \times 0.45}{500}} = 0.93$$
(6)

Where (f_a) is the delay factor for advancing and (f_h) is the delay factor due to changing hoppers which are both reduction factors consisting of some calculation parameters, such as (t_a) or the time it takes to advance to the next dredging position and expressed in units of hours. Furthermore, where (t_h) or the time is needed to change hoppers, then P_{nom} was calculated previously, and afterwards there was (A), or the average area dredged by each crane in one dredging position and is expressed in units of square meters, while (z) is the average thickness of material to be dredged in one cut, and is expressed in units of meters. The hopper capacity (H) is expressed in cubic meter.

4.3.5. Maximum potential productivity

 P_{max} means maximum productivity with the circumstances under ideal conditions. Then, after all, the parameters required in the calculation has been obtained, by using

(5)

the equation number (7). The maximum productivity can be explained to be as follows:

$$\max f_a x f_h x \min$$
(7)

And so:

 $_{\text{max}}$ 0.99 x 0.93 x 85 \leftrightarrow $_{\text{max}}$ 78.68 m³/hr

4.3.6. Real productivity

Real production (P) is a productivity which was considered a reduction factor that obviously occurs during the dredging process. Then, assuming that the value of operational factors (f_o) and mechanical breakdown factor (f_b), is equal to TSHD, but for the delay, the factor will adjust the actual condition of the clamshell, so that real production can be explained as follows:

$$\max_{max} f_d f_o f_b \tag{3}$$

And so:

76.68 x 0.9 x 0.76 53.82 m³/hr

Based on the weekly production reports from Tondano as shown in table 28, real production capacity average is 72.83 cubic meters per hour. There is a difference of 19.01 cubic meters per hour between the average productivity with real productivity results of calculations using the theory or at 1.35 when both are divided. Table 29 the process of data entry and calculations for the Tondano productivity theory.

DESCRIPTION	RESULT	UNIT
Bulking factor (B)	0.45	-
Bucket Capacity (C)	5.5	m ³
Productive unit (U _b)	2	-
Number of Grab Hopper (N)	2	-
Grab Hopper Capacity (H)	500	m ³
Average dredging depth (d)	8	
Average thickness of material to be	1	m ³
dredged in one cut (z)	1	111
Average area dredged (A)	10000	m ²
Time required to advance to the next	0.45	hre
dredging position (t _a)	0.45	1115
Time required to change hopper (t _h)	1	hrs
Nominal uninterrupted output (P _{nom})	85	m ³ per hr
Delay factor for advancing (f_a)	0.99	-
Delay factor due to changing hoppers (f _h)	0.93	-
Maximum potential productivity (P _{max})	78.68	m ³ per hr
Output (P _{real})	53.82	m ³ per hr

 Table 29. Data entry section for Tondano productivity

4.3.7. Achievement of the project duration by the existing grab clamshells

The volume to be dredged by grab clamshell is as much as 283,546 cubic meters and should be completed within 150 calendar days. If the work has begun on 31 July 2012, it will end on 27th December 2012. The daily and weekly reports of the project until week 17 or until 25 November 2012, the grab clamshell dredged 208,000 cubic meters. According to this data explanation, so that the time is left for TSHD project is only for 33-days calendar, and still left a volume amounting to 75.546 cubic meters. Further, if viewed from the planned production capacity by the contractor in the amount of 2,400 cubic meters per day, then the dredging project will be able to be completed in only 118 calendar days or will be finished 32 days ahead or on the 25 November 2012. However, if viewed from the real productivity theory and the project require additional time during the 58 calendar days (or 25 calender days from 27th of December 2012); this is obtained by dividing the volume of the remaining

work with real productivity theory and will be completed on 20 January 2013. This is delayed in the work for 25-days. Further, the explanation of the achievement of the time of this work can be simplified in the following illustration;

Figure 20. Timeline of dredging project by Clamshell

	Tondano - Clasmshell								
Week	The average real production capacity		Real production capacity theory		Planned p capa	Difference in production capacity			
	Weekly (m ³)	Daily (m ³ /hr)	Weekly (m ³)	Daily (m ³ /hr)	Weekly (m ³)	Daily (m ³ /hr)	Daily (m ³ /hr)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8) = (7) - (3)		
1	1.200	7.14	9041.28	53.82	2400	100	93		
2	16.000	95.24	9041.28	53.82	2400	100	5		
3	10.400	61.90	9041.28	53.82	2400	100	38		
4	9.600	57.14	9041.28	53.82	2400	100	43		
5	9.600	57.14	9041.28	53.82	2400	100	43		
6	10.800	64.29	9041.28	53.82	2400	100	36		
7	14.400	85.71	9041.28	53.82	2400	100	14		
8	12.400	73.81	9041.28	53.82	2400	100	26		
9	18.400	109.52	9041.28	53.82	2400	100	(9.52)		
10	14.000	83.33	9041.28	53.82	2400	100	17		
11	6.800	40.48	9041.28	53.82	2400	100	60		
12	9.600	57.14	9041.28	53.82	2400	100	43		
13	12.000	71.43	9041.28	53.82	2400	100	29		
14	15.200	90.48	9041.28	53.82	2400	100	10		
15	18.000	107.14	9041.28	53.82	2400	100	(7.14)		
16	15.600	92.86	9041.28	53.82	2400	100	7		
17	14.000	83.33	9041.28	53.82	2400	100	17		

Table 30. Comparisons of estimates production capac	nparisons of estimates production capacit
--	---

A comparison of the three methods of approach to estimate productivity results as shown in Table 16, where the week-9th and 15th, respectively generate 109.52 and 107.14 cubic meters per hour. Average productivity shows the progress of work exceeds that of planned productivity by contractors. However, from the perspective of the project owner (port), real productivity theory is more decisive to be considered as a productivity which represents the real performance in the field because it had been to consider the factor of reduction according to the conditions at the project site. in addition, productivity has a smaller value so that in the implementation of the project the contractor is expected to be better prepared, in providing the type of dredger and production capacity is well used.

4.3.8. Productivity of another alternative Clamshell

There is a significant difference between the real productivity theory and planneds contractor productivity caused by an estimated project delay by up to 25 calendar days. In addition, these conditions should be anticipated by accelerating the implementation of the project by an approximate calculation of the delay duration of the project by providing an alternative to another similar dredger with varying capacities. Furthermore, besides the clamshell bucket capacity of 5.5 cubic meters, the contractor also has a clamshell bucket capacity of 20 cubic meters as an alternative solution.

4.3.9. Productivity of Danau Laut Tawar

Danau Laut Tawar is the name of the type clamshell dredger bucket capacity of 20 cubic meters owned by PT Rukindo. Below is the calculation to determine the productivity theory required modification factor or bucket fill factor (f_m) which was obtained through the equation for the number (10):

 $f_m \quad 0.1443 \; n \qquad 0.25$

And so:

 $f_m \quad 0.1443 \; x \quad n \; \; 20 \qquad 0.25 \qquad f_m \quad 0.68$

While the nominal production can be calculated by an equation number (11) by first determining the productive unit (U_b) following table (11) at 0.36 C, so calculations be are as follows:

$$nom \quad \frac{3600}{T_{cycle}} f_{m} \tag{11}$$

Consequently:

$$nom = \frac{3600}{90} \times 7.2 \times 0.68 = 196.50 \text{ m}^3/\text{ hrs}$$

Then by assuming that the value f_o and f_h are equal to Tondano, the P_{max} can be calculated to be the following:

$$\max f_a x f_h x \max$$
(7)

And so:

$$_{\text{max}}$$
 0.996 x 0.93 x 196.50 \rightarrow $_{\text{max}}$ 181.89 m³/ hrs

Finally, the real production theory of the clamshell 20 cubic meters, can be calculated by taking into account the reduction factor for f_0 and f_b which are assumed to be equal to the previous calculation. So the calculation is as follows:

$$f_0 x f_b x_{max}$$
 (8)

And so:

$$0.90 \ge 0.76 \ge 181.89 \rightarrow 124.41 \text{ m}^3/\text{ hrs}$$

(10)

The real productivity theory of each variation clamshell has been taken into account and can be used as an alternative solution to meet the rest of the projected volume.

Figure 21. Comparison of other Clamshell real production capacity theory In fulfilling the rest of the dredging volume with the remaining time available, the required minimum production capacity is 95.39 cubic meters per hour. Therefore, the combination of the two clamshell dredgers is necessary to be considered as an alternative in resolving the issue.

Figure 22. Comparison of production capacity for any real Clamshell alternative

Tondano combined with a clamshell bucket capacity of 20 cubic meters, has produced the highest productivity as shown in Figure 22. This implementation through a combination of dredgings can be completed during the period to 19 weeks with a productivity of 178.23 cubic meters per hour. However, the cost factor should be considered in order to set the optimal solution of the problem.

Figure 23. Comparison of production capacity for any real alternative

4.3.10. Delay factor Information of Grab Clamshell

Based on the summary of daily reports for delays in the project, the factors are classified into six factors that cause delays during the project implementation. As for the main causes are repair and maintenance of engine failure, have led the project a time lost of 288.83 hours or equal to 12 calendar days. In addition, other causes are waiting for lubricant amounted to 153.00 hours or approximately 6 calendar days. In addition, there are factors, such as the time of prayer and religious holidays, administrative issue, waiting for refueling, and movement the position of the dredger, where the four last factors is accounted for 198.42 hours of lost time or approximately 8 calendar days. The details can be seen in Table 31:

No	DESCRIPTION	Time Delays						
INO.	NO. DESCRIPTION		Days	%				
1	Repair and Maintenance of Engine Failure	288.83	12.0	8.02%				
2	Waiting for Lubricant	153.00	6.4	4.25%				
3	The Time of Prayer & Religious Holidays	144.00	6.0	4.00%				
4	Administrative issues	24.83	1.0	0.69%				
5	Waiting for Refueling	20.17	0.8	0.56%				
6	Movement the Position of the Dredger	9.42	0.4	0.26%				
	Total Time Lost	640.25	26.7	17.78%				
	Total Time Available for the Project : 150 Days Calender							

Table 31. Factors causing delays

Further, from Table 31, for the factors number one up to number six, can be categorized as project management issues which had been contributed to losing time overall of approximately 26 calendar days or equal to 26.7% of the project duration.

5. Estimated cost of the dredging project

The total project cost under the contract amounted to IDR 60 billion, with a total volume of 1,190,595 cubic meters dredged, while the total volume of which has been dredged up to week 17, either by TSHD or clamshell respectively 632,000 and 208,000. So that the total volume of dredged by both types of dredgers amounted to 840,000 cubic meters or progress of the project's total equivalent to 70.55%. In other words, it can simply be assumed that the dredging project budget that has been absorbed by IDR 42,331,775,289 or calculated through the 70% multiplied by IDR 60 billion. So, the rest of the budget which has not been absorbed is equal to IDR 17,668,224,711. The cost required to accelerate the project is calculated by following regulation of the Minister of Transportation of the Republic of Indonesia No. KM. 70, 2010, regarding standard costs in 2011 in the ministry of transportation. As for the cost of the dredging project required acceleration of each type of dredger can be seen in Table 32 below and detailed calculations contained in the appendix B-1.

T (D)	Productivity	Dredging Work	The rest of	The Cost of Dredging		Cost	Total Cost (IDR)	
Type of Dredger	(m ³ per Days)	Unit Price (IDR)	Volume (m ³)	work (IDR)	Mobilization	Demobilization		
(1)	(2)	(3)	(4)	$(5) = (3) \times (4)$	(6)	(7)	(8) = (5) + (6) + (7)	
Kalimantan II	3.480	88.812	275.049	24.427.651.788	0.00		24.427.651.788	
Kalimantan II + TSHD 1000	4.614	269.026	275.049	73.995.332.274	684.392	684.392	73.996.701.058	
Kalimantan II + TSHD 2000	5.540	217.392	275.049	59.793.452.208	976.399	976.399	59.795.405.006	
Kalimantan II + TSHD 2900	6.239	195.646	275.049	53.812.236.654	1.076.633	1.076.633	53.814.389.920	
Kalimantan II + TSHD 4000	6.960	177.624	275.049	48.855.303.576	1.151.578	1.151.578	48.857.606.732	
Kalimantan II + TSHD 5000	7.517	174.059	275.049	47.874.753.891	1.502.564	1.502.564	47.877.759.019	
Todano	1.292	48.501	75.546	3.664.056.546	-		3.664.056.546	
Todano + Clamshell 5,5	2.583	97.002	75.546	7.328.113.092	453.974	453.974	7.329.021.040	
Todano + Clamshell 20	4.278	79.479	75.546	6.004.320.534	795.905	795.905	6.005.912.344	
Clamshell 20	2.986	30.978	75.546	2.340.263.988	795.905	795.905	2.341.855.798	

Table 32. The estimated cost of dredging alternatives

The rest of the volume of TSHD and Clamshell respectively 275,049 and 75,546 cubic meters. As for the existing TSHD combination with TSHD 1000 will cost around IDR 73,9 billion, and combined with TSHD 2000 will cost around IDR 59,7 billion, the next combination is with TSHD 2900 at a cost of about IDR 53,8 billion is required, then combined with TSHD 4000 will cost around IDR 48,8 billion, and the latter is combined with TSHD and will cost at IDR 47,87 billion. In addition, the

combination of the existing clamshell with a clamshell bucket capacity of 5.5 cubic meters will cost around IDR 7.3 billion, and when combined with a clamshell bucket capacity of 20 cubic meters it costs around IDR 6 billion. Furthermore, if the existing clamshell replaced with a clamshell bucket capacity of 20 cubic meters, the cost dibuthkan around IDR 2.3 billion.

6. Conclusion and Recommendation

6.1. Trailing Suction Hopper Dredger

The real productivity theories of the existing TSHD proved to be 145.01 cubic meters per hour or less than 4.6 times of the initial calculation by the contractor. The estimated time needed to conclude the dredging project of 907,049 cubic meters, Based on the real productivity theory calculation of TSHD will required 79 calender days which is 46 days more than the initial duration remaining calculation of the contract and can be considered as potential delay.

In order to anticipate the potential delay, an acceleration of the implementation of the project through an increase in real production is necessary. The acceleration can be done using alternative similar dredgers, namely TSHD 1000, TSHD 2900, TSHD 4000, and TSHD 5000.

The research has identified several problems in the dredging operation that hinder the project productivity. The Problems are classified into two categories, the project management issues (internal factor) and weather issue (external factor). Among the existing problems, the time needed to wait for lubricants is the most hindering factor which accounts up to 8.15% of the total time lost, followed by repair and maintenance of engine failure 7.36%, the time of prayer and religious holidays 5.55%, and waiting for refueling 4.41%. The weather is the only external issue identified only accounts for 0.16%. This has proved that the management issues should be taken into considerations to improve the productivity of the dredging operations.

Finally, from the perspective of alternative production capacity, the combination of existing TSHD with TSHD 5000 presents the greatest acceleration as well as a good solution to pursue potential delays in the project duration. Meanwhile, a real productivity theory is recommended to be used in determining the productivity of the

dredger, because they represent the real conditions in the project and taking into account the circumstances as reduction factors.

6.2. Grab Clamshell Dredger

The real productivity theory of the grab clamshell dredger amounted to 53.82 cubic meters per hour, or 0.54 times smaller than the production plan. The contract volume, for sedimentation, which must be dredged, by the contractor, is 283,546 cubic meters within 150 calendar days and will expire at the end of week 22. In addition, according to the calculation of the real productivity theory of grab clamshell is required during 58 days than the rest of the project duration of the contract and can be considered as potential delay.

In order to address the issue of the potential delay in completion of the project, then considered to add other similar dredging fleet, with the same production capacity or replace existing dredger with a larger capacity. The clamshell grab with a bucket capacity of 5.5 and 20 cubic meters has become an alternative option.

The management issues came out to be the main problems in the dredging productivity in grab clamshell. The time needed for repair and maintenance of engine failure has acounted for 8.02% of the total time lost followed by waiting for the lubricant 4.25%, the time of prayer and religious holidays 4.0%, administrative issue 0.69%, waiting for refueling 0.56%, and movement the position of the dredger 0.26%. No external factor has been found in this case.

The research suggests the replacing of the existing grab clamshell with the clamshell bucket capacity of 20 cubic meters to pursue the potential delay. In addition, the rest of the volume to be dredged material is not too much. So does not require high real production capacity. The real productivity theory with some consideration of the reduction factor also need to be applied in determining the production capacity of the dredger to represents the actual conditions in the project dredging operation. The reduction factors such as the level of reliability of the management and crew, mechanical breakdown factor, and the delay factors for changing the hopper and advancing, also significantly reduce the production plans under ideal circumstances.

APPENDIX A TRAILING SUCTION HOPPER DREDGE AND GRAB CLAMSHELL PRODUCTION

Analysis of the productivity of each dredger has been incorporated into one count of using the auxiliary program Microsoft Excel. This section will describe briefly the sequence of calculation of the productivity of each type of dredger including alternative productivity in which some calculation parameters are used such as data information from project reports, reduction factor, and a calculation equation referred to under of references provided. Meanwhile, if there is a lack of data availability as a parameter calculation, it will be solved by the logical assumption.

PROJECT INFORMATION - DAILY SUMMARY REPORT OF THE PROJECT BY TSHD									
			TSH	D Kalimantaı	n II				
	Loading	Delays	Sailing	Discharging	Amount of work	Producti	vity (m ³)		
Week	Hour	Hour	Hour	Hour	Trip	Weekly	Cumulative		
1	9.00	20.00	42.17	0.83	5.00	8.000	-		
2	15.17	107.58	42.92	2.33	14.00	22.400	30.400		
3	26.83	68.42	68.92	3.83	23.00	36.800	67.200		
4	22.17	89.42	53.42	3.00	18.00	28.800	96.000		
5	38.67	30.17	93.83	5.33	32.00	51.200	147.200		
6	29.92	74.33	61.58	3.50	20.00	32.000	179.200		
7	44.32	18.00	99.75	5.50	33.00	52.800	232.000 272.000		
8	32.33	57.83	73.67	4.17	25.00	40.000			
9	45.17	45.17 6.92 109.75 6.00		37.00	59.200	331.200			
10	27.25	67.67	69.42	3.67	22.00	35.200	366.400		
11	21.00	88.08	55.75	3.17	19.00	30.400	396.800		
12	35.00	42.08	86.08	4.83	29.00	46.400	443.200		
13	31.50	47.67	84.17	4.67	28.00	44.800	488.000		
14	31.50	51.83	80.17	4.33 27.00		43.200	531.200		
15	42.17	11.58	108.42	6.00	36.00	57.600	588.800		
16	22.17	75.42	67.25	3.17	19.00	30.400	619.200		
17	9.33	133.58	23.75	1.33	8.00	12.800	632.000		
Total	483.48	990.58	1221.00	65.67	395.00				
Total hr/ total trip	1.22	2.51	3.09	0.17					

Table A-1. Project site information used in estimate dredger productivity

Table A-1 provides a summary of daily reports the dredging project which presents data related to loading time, time delays, sailing time, discharging time and productivity which in has been recapitulated in the weekly. Furthermore, this data is

required in the calculation of the estimated real productivity theory as a parameter that can represent the actual circumstances. Besides that as a comparison between the average productivity with real productivity theory, which then can be used as a reference in the calculation of the estimated duration of the remaining projects and was last used as a reference in determining the productivity of other dredgers.

Table A-2 below is a sequence of calculations where there are three columns. The first column on the left contains is a description of the items that have been determined and will be searched which are divided into four basic calculations such as the dredging operations, reduction factor, real productivity theory, and the duration of the project, including the parameters that have been obtained from the project data and assumptions. The second column in the middle is the result of each item searched from the first column. The third last column on the right is the unit of each parameter to be searched.

The next is Table A-3 which is an advanced calculation to find the real productivity theory, from each dredger alternative. There are five columns in this table where the first column on the left is a description of the parameters needed in the calculation. The second column to the fifth column is the value of the parameter that is searched for each capacity that has been adjusted for each type of alternative dredger. on the bottom line where green is the outcome of matter in the form of real productivity capacity of each alternative theory that has been determined namely TSHD with a hopper capacity of 4000 m³, TSHD 1000 m³, TSHD 2900 m³ and 5000 m³ TSHD.

Table A-4 is a summary of the results of the previous calculation which presented four dredgers with a different kind of hopper capacity as an alternative to problem solving of real productivity and potential delays in the project. The selection of four types of dredgers is based on the alternative dredging fleet ownership by PT Rukindo as the contractor, as well as adjusted to the ability for dredge sediment material types at the project site.

DREDGE OPERATIONAL	RESULT	UNIT
Number working hour of 17 weeks	2856	hours
Loading Time (t _{load})	1.22	hours
Sailing Time (t _{sail})	3.09	hours
Discharging Time (t _d)	0.17	hours
Total Delays Time (t_t)	990.58	hours
Bulking Factor (B)	1.10	-
Hopper Capacity (H)	4000	m^3
Proportion of Hopper filled (f _e)	0.40	-
REDUCTION FACTOR	RESULT	UNIT
Delay Factor (f _d)	0.65	-
Operasional Factor (f _o)	0.90	-
Mechanical Break Down Factor (f _b)	0.76	-
PRODUCTION RATE	RESULT	UNIT
Maximum Potential Output (P _{max)}	324.57	m ³ per hr
Output (P _{real})	145.01	m ³ per hr
TIME CALCULATION	RESULT	UNIT
Total volume of dredging	1.190.595	m ³
Volume derdging of TSHD	907.049	m ³
Volume dredging of Clamshell	283.546	m ³
Total volume dredged for 17 weeks	632.000	m ³
The remaining volume of dredging	275.049	m^3
Duration of project	150	Days Calender
Start	31/07/2012	Date
Finish / Last period of Project	27/12/2012	Date
Last of Week 17	25/11/2012	Date
Remaining time of project	33	Days Calender
Output expected (P should)	347	m' per hr
Time required according to real productivity	79	Days Calender
Estimate Duration of project delays	46	Days Calender

Table A-2. Summary of the Project calculation dredged by TSHD

There is conducted a scenario combination of two TSHD working on the project (in table A-4). Each combination has resulted in an increase of real productivity for completing the project in accordance with the time remaining. In this regard presented two possibilities whether to add additional dredger or replaces the existing ones.

DESCRIPTION	TSHD									
DESCRIPTION	4000 m^3	1000 m^3	2000 m ³	2900 m ³	5000 m ³					
Hopper Capacity (H)	4000	1000	2000	2900	5000					
Loading Time (t _{load})	1.22	0.306	0.612	0.887	1.530					
Sailing Time (t_s)	3.09	3.09	3.09	3.09	3.09					
Discharging Time (t _d)	0.17	0.042	0.083	0.121	0.208					
Buckling Factor (B)	1.10	1.10	1.10	1.10	1.10					
Proportion of Hopper filled (f _e)	0.40	0.40	0.40	0.40	0.40					
Maximum Potential Output (P _{max)}	324.57	105.75	192.08	257.26	376.52					
Number working hour of 17 weeks	2856	2856	2856	2856	2856					
Total Delays Time (t_t)	990.58	990.58	990.58	990.58	990.58					
Delay Factor (f _d)	0.65	0.65	0.65	0.65	0.65					
Operasional Factor (f _o)	0.90	0.90	0.90	0.90	0.90					
Mechanical Break Down Factor (f _b)	0.76	0.76	0.76	0.76	0.76					
Output (P _{real})	145.01	47.24	85.81	114.94	168.21					

 Table A-3. Summary of the project calculation Dredged

Table A-4.	Comparison	of alternative	productivity

Summary of Real Productivity								
Type of Dredger	(P _{real})	Unit						
TSHD 1000	47.24	m ³ per hour						
TSHD 2000	85.81	m ³ per hour						
TSHD 2900	114.94	m ³ per hour						
TSHD 4000	145.01	m ³ per hour						
TSHD 5000	168.21	m ³ per hour						
Alternative Pr	oductivity							
Type of Dredger	Prod. Capacity	Unit						
TSHD Kalimantan II	145.01	m ³ per hour						
THSD Kalimantan II + 1000	192.25	m ³ per hour						
TSHD Kalimantan II + 2000	230.82	m ³ per hour						
TSHD Kalimantan II + 2900	259.94	m ³ per hour						
TSHD Kalimantan II + 4000	290.01	m ³ per hour						
TSHD Kalimantan II + 5000	313.22	m ³ per hour						

Туре	of Dredger	(Preal)	Unit																					
TS	HD 1000	47.24	m3 per hour																					
TS	HD 2000	85.81	m3 per hour																					
TS	HD 2900	114.94	m ³ per hour																					
TS	HD 4000	145.01	m ³ per hour																					
TS	HD 5000	168.21	m ³ per hour								ANALYSIS	DURATION F	OR ACCE	LERATING	ACHIEVEN	MENT OF THE	E PROJE	T						
Total s	sedimentati	on of the projec	:t	1.190.595	m ³																			
Total s	sediment dı	edged by TSHI	D of	907.049	m ³																			
		TSHD K	alimantan II	Ι	Т	SHD Kalimant	an + TSHD 1	000 m3	Т	SHD Kaliman	tan + TSHD 2	2000 m3	TSI	ID Kalimanta	an + TSHD 2	900 m3	T	SHD Kaliman	tan + TSHD 4	000 m3	TSH	.D Kalimanta	.n II + TSHD	5000 m3
	Progress	of work (%)	Progress	of work (m3)	Progress	of work (%)	Progress of	f work (m3)	Progress	of work (%)	Progress of	of work (m3)	Progress of	f work (%)	Progress o	f work (m3)	Progress	of work (%)	Progress o	f work (m3)	Progress o	f work (%)	Progress o	f work (m3)
	%	%	m ³	m ³	%	%	m ³	m ³	%	%	m ³	m ³	%	%	m ³	m ³	%	%	m ³	m ³	%	%	m ³	m ³
Week	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative
1	0.88%	0.88%	8.000	8.000	0.88%	0.88%	8.000	8.000	0.88%	0.88%	8.000	8.000	0.88%	0.88%	8.000	8.000	0.88%	0.88%	8.000	8.000	0.88%	0.88%	8.000	8.000
2	2.47%	3.35%	22.400	30.400	2.47%	3.35%	22.400	30.400	2.47%	3.35%	22.400	30.400	2.47%	3.35%	22.400	30.400	2.47%	3.35%	22.400	30.400	2.47%	3.35%	22.400	30.400
3	4.06%	7.41%	36.800	67.200	4.06%	7.41%	36.800	67.200	4.06%	7.41%	36.800	67.200	4.06%	7.41%	36.800	67.200	4.06%	7.41%	36.800	67.200	4.06%	7.41%	36.800	67.200
4	3.18%	10.58%	28.800	96.000	3.18%	10.58%	28.800	96.000	3.18%	10.58%	28.800	96.000	3.18%	10.58%	28.800	96.000	3.18%	10.58%	28.800	96.000	3.18%	10.58%	28.800	96.000
5	5.64%	16.23%	51.200	147.200	5.64%	16.23%	51.200	147.200	5.64%	16.23%	51.200	147.200	5.64%	16.23%	51.200	147.200	5.64%	16.23%	51.200	147.200	5.64%	16.23%	51.200	147.200
6	3.53%	19.76%	32.000	179.200	3.53%	19.76%	32.000	179.200	3.53%	19.76%	32.000	179.200	3.53%	19.76%	32.000	179.200	3.53%	19.76%	32.000	179.200	3.53%	19.76%	32.000	179.200
/ 0	5.82%	25.58%	52.800	232.000	5.82%	25.58%	52.800	232.000	5.82%	25.58%	52.800	232.000	5.82%	25.58%	52.800	232.000	5.82%	25.58%	52.800	232.000	5.82%	25.58%	52.800	232.000
0	4.41%	29.99%	40.000	272.000	4.41%	29.99%	40.000	272.000	4.41%	29.99%	40.000	272.000	4.41%	29.99%	40.000	272.000	4.41%	29.99%	40.000	272.000	4.41%	29.99%	40.000	272.000
10	6.53%	36.51%	59.200 25.200	331.200	6.53%	36.51%	59.200	331.200	6.53%	36.51%	59.200	331.200	6.53%	36.51%	59.200	331.200	6.55%	36.51%	59.200 25.200	331.200	6.5 <i>5</i> %	36.51% 40.20%	59.200	331.200
11	3.88%	40.39%	35.200	366.400	3.88%	40.39%	35.200	366.400	3.88% 2.25%	40.39%	35.200	306,400	3.88%	40.39%	35.200	306.400	3.88% 2.25%	40.39%	35.200	306.400	3.88%	40.39%	35.200	306.400
12	5.33%	45.7570	30.400 46.400	443 200	5.33%	45.7570	30.400 46.400	443 200	5.55%	45.7570	30.400 46.400	443 200	5.12%	45.7570	30.400 46.400	443 200	5.33%	45.7570	30.400 46.400	443 200	5.33%	43.7370	30.400 46.400	443 200
13	J.1270	53.80%	40.400	488.000	J.1270	53.80%	40.400	445.200	J.1270	53.80%	40.400	445.200	J.1270	40.00%	44 800	445.200	J.1270	53 80%	40.400	488.000	J.1270	53.80%	40.400	445.200
14	4 76%	58.56%	43 200	531 200	4 76%	58.56%	43 200	531 200	4 76%	58.56%	43 200	531 200	4 76%	58.56%	43 200	531 200	4 76%	58.56%	43 200	531 200	4 76%	58.56%	43 200	531 200
15	6 35%	64 91%	57.600	588 800	6 35%	64 91%	57.600	588 800	6 35%	64 91%	57 600	588 800	6.35%	64 91%	57 600	588 800	6 35%	64 91%	57 600	588 800	6.35%	64 91%	57.600	588 800
16	3.35%	68.27%	30,400	619,200	3.35%	68.27%	30,400	619,200	3.35%	68.27%	30,400	619,200	3.35%	68.27%	30,400	619.200	3.35%	68.27%	30,400	619,200	3.35%	68.27%	30,400	619.200
17	1.41%	69.68%	12.800	632.000	1.41%	69.68%	12.800	632.000	1.41%	69.68%	12.800	632.000	1.41%	69.68%	12.800	632.000	1.41%	69.68%	12.800	632.000	1.41%	69.68%	12.800	632.000
18	2.69%	72.36%	24.361	656.361	3.56%	73.24%	32.298	664.298	4.28%	73.95%	38.778	670.778	4.81%	74.49%	43.670	675.670	5.37%	75.05%	48.722	680.722	5.80%	75.48%	52.621	684.621
19	2.69%	75.05%	24.361	680.722	3.56%	76.80%	32.298	696.596	4.28%	78.23%	38.778	709.556	4.81%	79.31%	43.670	719.341	5.37%	80.42%	48.722	729.445	5.80%	81.28%	52.621	737.242
20	2.69%	77.73%	24.361	705.083	3.56%	80.36%	32.298	728.894	4.28%	82.50%	38.778	748.334	4.81%	84.12%	43.670	763.011	5.37%	85.79%	48.722	778.167	5.80%	87.08%	52.621	789.862
21	2.69%	80.42%	24.361	729.445	3.56%	83.92%	32.298	761.192	4.28%	86.78%	38.778	787.112	4.81%	88.93%	43.670	806.681	5.37%	91.16%	48.722	826.889	5.80%	92.88%	52.621	842.483
22	2.69%	83.11%	24.361	753.806	3.56%	87.48%	32.298	793.491	4.28%	91.05%	38.778	825.890	4.81%	93.75%	43.670	850.351	5.37%	96.53%	48.722	875.611	5.80%	98.68%	52.621	895.104
23	2.69%	85.79%	24.361	778.167	3.56%	91.04%	32.298	825.789	4.28%	95.33%	38.778	864.668	4.81%	98.56%	43.670	894.022	5.37%	101.91%	48.722	924.334	5.80%	104.48%	52.621	947.725
24	2.69%	88.48%	24.361	802.528	3.56%	94.60%	32.298	858.087	4.28%	99.60%	38.778	903.446	4.81%	103.38%	43.670	937.692	5.37%	107.28%	48.722	973.056	5.80%	110.29%	52.621	1.000.346
25	2.69%	91.16%	24.361	826.889	3.56%	98.16%	32.298	890.385	4.28%	103.88%	38.778	942.224	4.81%	108.19%	43.670	981.362	5.37%	112.65%	48.722	1.021.778	5.80%	116.09%	52.621	1.052.966
26	2.69%	93.85%	24.361	851.250	3.56%	101.72%	32.298	922.683	4.28%	108.15%	38.778	981.001	4.81%	113.01%	43.670	1.025.032	5.37%	118.02%	48.722	1.070.500	5.80%	121.89%	52.621	1.105.587
21	2.69%	96.53%	24.361	8/5.611	3.56%	105.28%	32.298	954.981	4.28%	112.43%	38.778	1.019.779	4.81%	117.82%	43.670	1.068.703	5.37%	123.39%	48.722	1.119.223	5.80%	127.69%	52.621	1.158.208
20	2.09%	99.22%	24.301	899.972	3.30%	108.85%	32.298	987.279	4.28%	120.089/	38.//8	1.058.55/	4.81%	122.04%	43.0/0	1.112.3/3	5.37%	128./0%	48.722	1.10/.945	5.80%	133.49%	52.621	1.210.829
30	2.09%	101.91%	24.301	924.334	3.56%	112.41%	32.298	1.019.377	4.28%	120.98%	38.778	1.097.333	4.81%	127.45%	43.070	1.130.043	5 37%	134.13%	48.722	1.210.00/	5.80%	145 00%	52.621	1.205.450
50	2.0976 accel	eration of the	project by :	1.00	3.30%	leration of the	project by :	1.031.075	4.2070 acce	leration of the	e proiect by :	1.150.115	accele	ration of the	project by :	1.177./13	acce	eration of the	project by :	2.00	accele	ration of the	<i>project bv</i> :	2.16
				1.00			r	1.55			· · · · · · · · · · · · · · · · · · ·	1.35			r	1./5			1	2.00			x	2.10

Table A-5. Analysis for accelerating achievement of the project by TSHD

Table A-5 is the end product of a real theory THSD productivity calculation and estimation of the possibility of accelerating the achievement of the project duration. There are two main categories, namely calculation progress of work which is expressed in percentage and in the number of cubic meters. The main categories is subdivided into two sub-categories, a weekly progress of work and the progress of work cumulative, either in percentage or in cubic meters. As for the yellow color on the line above, is a recapitulation of productivity of a daily report of the project, in which data are available up to week 17 with the total sediment dredged as 632,000 cubic meters or equivalent to 69.68% of the amount of sediment by TSHD (amounting to 907,049 cubic meters). Hereinafter, weekly and cumulative productivity calculation will be based on real productivity preconceived theories, including the combination of project completion.

Referring to the employment contract, the project was due to expire at week 22. Furthermore, for the TSHD Kalimantan II with real productivity theory capable of completing the project up to weeks 29 with a cumulative result of dredging sediment of 924,334 cubic meters or equivalent to 101.91% of the total sediment dredged by TSHD. Then for the combination of TSHD 1000 and the existing TSHD able to complete projects up to 26 weeks with a cumulative result of dredging sediment of 922.683 cubic meters or equivalent to 101.72% and provide accelerated project completion, at 133 times faster, which is calculated by dividing productivity real alternatives and real productivity for the TSHD existing theories. Next the combination of TSHD 2000 and the existing TSHD is able to complete projects up to 26 weeks with a cumulative result of dredging sediment of 942,224 cubic meters or equivalent to 103.88% and provide accelerated project completion, at 1.59 times faster. Likewise, the combination TSHD 2900 and the existing TSHD is able to complete projects up to weeks 25 with a cumulative result of dredging sediment of 937,692 cubic meters or equivalent to 103.38% and provides accelerated completion of the project amounted to 1.79 times faster. Meanwhile, with TSHD 4000 and TSHD existing, as well as TSHD 5000 and the existing TSHD which provides acceleration of 2.0 times, and 2.16 times faster respectively. As for the achievement of this project has been illustrated in figure 17.

Table A-6 below is a sequence of calculations of the grab clamshell. Similar to the explanation in Table A-2, where the first column to the left is a description of the items that have been determined and will be searched which are divided into four basic calculation that the operational dredging, reduction factor, real productivity theory, and the duration of the project. However, there are additional items of the reduction factor for adjusting the work methods of dredging equipment. The additional reduction factor in the calculation is the delay factor for advancing (f_a) and the delay factor for changing the hoppers (f_h). These two explanations can be found in the chapter reviews of the production rate for grab clamshell. The second column in the middle is the result of each item searched from the first column while the third last column on the right is the unit of each parameter to be searched. The parameters presented in this calculation are obtained from the project data and the researcher assumptions.

DREDGE OPERATIONAL PLAN	RESULT	UNIT
Bucket Capacity, C	5.50	m ³
Productive unit, U _b	2.00	m ³
Number of Grab Hopper	2.00	unit
Grab Hopper Capacity, H	500	m ³
Average dredging depth, d	8.00	m
Average thickness of material to be dredged in	1.00	m
one cut, z	1.00	111
Average area dredged, A	10.000	m
Time required to advance to the next dredging	0.45	hrs
position, t _a	0.45	111.5
Time required to change hopper, t _h	1.00	m ²
REDUCTION FACTOR	RESULT	UNIT
Bulking factor, B	0.45	-
Delay factor for advancing, f _a	0.996	-
Delay factor due to changing hoppers, f_h	0.93	-
Operasional Factor (f _o)	0.90	-
Mechanical Break Down Factor (f _b)	0.76	-
PRODUCTION RATE	RESULT	UNIT
Nominal Production, P _{nom}	85.00	m ³ per hrs
Maximum Potential Output (P _{max)}	78.68	m ³ per hrs
Output (P _{real})	53.82	m ³ per hrs
TIME CALCULATION	RESULT	UNIT
Total volume of dredging	1.190.595	m ³
Volume derdging of TSHD	907.049	m ³
Volume dredging of Clamshell	283.546	m ³
Total volume dredged for 17 weeks	208.000	m ³
The remaining volume of dredging	75.546	m ³
Duration of project	150	Days Calender
Start	31/07/2012	Date
Finish / Last period of Project	27/12/2012	Date
Last of Week 17	25/11/2012	Date
Remaining time of project	33	Days Calender
Output expected (P should)	95.39	m ³ per hr
Time required according to real productivity	58	Days Calender
Estimate duration of project delays	25	Days Calender
Duration of project according to planned	31	Days Calender

Table A-6. Summary of the project calculation dredged by clamshell
Type o	of Dredger	(P _{real})	Unit													
Clamshell	Tondano 5,5	53.82	m ³ per hour													
Clamshell	5,5	53.82	m ³ per hour													
Clamshell	20	124.411	m ³ per hour			ANA	LYSIS DU	JRATION F	OR ACCEI	LERATING	ACHIEVE	MENT OF 1	ГНЕ РКОЛ	ECT		
Total sedin	nentation of th	e project	1190595	m ³												
Total sedin	nent dredged b	y Clamshell of	283.546	m ³												
		Clamshell	Tondano		Cla	mshell Tondan	o + Clamshel	l 5,5	Cla	mshell Tondai	no + Clamshel	1 20		Clams	hell 20	
	Progress o	f work (%)	Progress of	work (m3)	Progress o	f work (%)	Progress of	f work (m3)	Progress o	f work (%)	Progress of	f work (m3)	Progress o	f work (%)	Progress of	f work (m3)
	%	%	m ³	m ³	%	%	m ³	m ³	%	%	m ³	m ³	%	%	m ³	m ³
Week	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative	Weekly	Cumulative
1	0.42%	0.42%	1.200	1.200	0.42%	0.42%	1200	1.200	0.42%	0.42%	1.200	1.200	0.42%	0.42%	1.200	1.200
2	5.64%	6.07%	16.000	17.200	5.64%	6.07%	16.000	17.200	5.64%	6.07%	16.000	17.200	5.64%	6.07%	16.000	17.200
3	3.67%	9.73%	10.400	27.600	3.67%	9.73%	10.400	27.600	3.67%	9.73%	10.400	27.600	3.67%	9.73%	10.400	27.600
4	3.39%	13.12%	9.600	37.200	3.39%	13.12%	9.600	37.200	3.39%	13.12%	9.600	37.200	3.39%	13.12%	9.600	37.200
5	3.39%	16.51%	9.600	46.800	3.39%	16.51%	9.600	46.800	3.39%	16.51%	9.600	46.800	3.39%	16.51%	9.600	46.800
7	5.81%	20.31%	10.800	57.600	5.81%	20.31%	10.800	57.600	5.81%	20.31%	10.800	57.600	5.81%	20.31%	10.800	57.600
2 2	5.08%	25.39%	14.400	/2.000	5.08%	25.39%	14.400	/2.000	5.08%	25.39%	14.400	/2.000	5.08%	25.39%	14.400	/2.000
0	4.3/%	29.77%	12.400	84.400	4.3/%	29.77%	12.400	84.400	4.3/%	29.77%	12.400	84.400	4.3/%	29.77%	12.400	84.400
10	6.49%	30.20%	18.400	102.800	6.49%	36.26%	18.400	102.800	6.49%	30.20%	18.400	102.800	6.49%	30.20%	18.400	102.800
11	4.94%	41.19%	14.000	110.800	4.94%	41.19%	14.000	110.800	4.94%	41.19%	14.000	110.800	4.94%	41.19%	14.000	122 (00
12	2.40%	45.5970	0.800	123.000	2.40%	45.39%	0.800	123.000	2.40%	45.59%	0.800	123.000	2.40%	45.59%	0.800	123.000
13	3.3970 4.23%	40.9070	12 000	145 200	3.3970 1.23%	40.9876 51.21%	12 000	145 200	3.3970 1 23%	40.9070 51.21%	12 000	145 200	3.3970 1 23%	40.9070 51.21%	12 000	145 200
14	5 36%	56 57%	15 200	160 400	5 36%	56 57%	15 200	160 400	5 36%	56 57%	15 200	160 400	5 36%	56 57%	15 200	160.400
15	6 35%	62 92%	18.000	178 400	6 35%	62 92%	18.000	178 400	6 35%	62 92%	18.000	178 400	6 35%	62 92%	18.000	178 400
16	5.50%	68 42%	15 600	194.000	5.50%	68 42%	15 600	194 000	5 50%	68 42%	15,600	194.000	5 50%	68 42%	15,600	194 000
17	4 94%	73 36%	14 000	208.000	4 94%	73 36%	14 000	208.000	4 94%	73 36%	14 000	208.000	4 94%	73 36%	14 000	208.000
18	3 19%	76 55%	9 041	217.041	6 38%	79 73%	18 083	226.083	10 56%	83 92%	29 942	237 942	7 37%	80 73%	20.901	228 901
19	3.19%	79.73%	9.041	226.083	6.38%	86.11%	18.083	244.165	10.56%	94.48%	29,942	267.885	7.37%	88.10%	20.901	249.802
20	3.19%	82.92%	9.041	235.124	6.38%	92.49%	18.083	262.248	10.56%	105.04%	29,942	297.827	7.37%	95.47%	20.901	270,703
21	3.19%	86.11%	9.041	244.165	6.38%	98.87%	18.083	280.330	10.56%	115.60%	29.942	327.769	7.37%	102.84%	20.901	291.604
22	3.19%	89.30%	9.041	253.206	6.38%	105.24%	18.083	298.413	10.56%	126.16%	29.942	357.712	7.37%	110.21%	20.901	312.505
23	3.19%	92.49%	9.041	262.248	6.38%	111.62%	18.083	316.495	10.56%	136.72%	29.942	387.654	7.37%	117.58%	20.901	333.406
24	3.19%	95.68%	9.041	271.289	6.38%	118.00%	18.083	334.578	10.56%	147.28%	29.942	417.597	7.37%	124.96%	20.901	354.308
25	3.19%	98.87%	9.041	280.330	6.38%	124.38%	18.083	352.660	10.56%	157.84%	29.942	447.539	7.37%	132.33%	20.901	375.209
26	3.19%	102.05%	9.041	289.372	6.38%	130.75%	18.083	370.743	10.56%	168.40%	29.942	477.481	7.37%	139.70%	20.901	396.110
27	3.19%	105.24%	9.041	298.413	6.38%	137.13%	18.083	388.826	10.56%	178.96%	29.942	507.424	7.37%	147.07%	20.901	417.011
28	3.19%	108.43%	9.041	307.454	6.38%	143.51%	18.083	406.908	10.56%	189.52%	29.942	537.366	7.37%	154.44%	20.901	437.912
29	3.19%	111.62%	9.041	316.495	6.38%	149.88%	18.083	424.991	10.56%	200.08%	29.942	567.308	7.37%	161.81%	20.901	458.813
30	3.19%	114.81%	9.041	325.537	6.38%	156.26%	18.083	443.073	10.56%	210.64%	29.942	597.251	7.37%	169.18%	20.901	479.714
	accele	eration of the	project by ;	1.00	accele	ration of the p	project by ;	2.00	accele	ration of the	project by ;	3.31	acceler	ration of the	project by ;	2.31

Table A-7. Analysis for accelerating achievement of the project by clamshell

Table A-7 is the end product of the calculation of the real productivity theory of the grab clamshell and the estimation of the possibility of accelerating the achievement of the project duration with the same assumptions uses in the previous table A-5. The total sedimentation in front of the wharf at seven terminals amounted to 283,546 meters and should be completed within 150 calendar days or 22 weeks. Using the real production capacity theory of 53.82 cubic meters per hour, the existing clamshell dredger is capable of completing the job entirely up to week 26, with the total achievement of the project of 102.5% or equivalent to 289,372 cubic meters at week 26. This means that the project is late for approximately four weeks. Therefore, refers to the calculation in the previous chapter, it is required to accelerate the achievement of the project through a combination of adding more dredger or replacing existing dredger with the one with a higher production capacity.

The first alternative is to bring in grab clamshell with a capacity bucket of 5.5 cubic meters to work with the existing dredger. Consequently, the two dredgers can generate twice 53.82 cubic meters per hour and are able to complete the project until week 22, with the total sediment dredged as 298,413 cubic meters or equivalent to 105.24%. This combination of two dredgers with the same capacity has resulted in 2.00 times acceleration. The second alternative is to add another grab clamshell with the bucket capacity of 20 cubic meters to work with the existing dredgers and generate real production theory of 178.23 cubic meters per hour resulted in the completion of the project in the week 20, with the total sediment dredged as 297.87 cubic meters or equivalent to 105.04%. This combination of two different bucket dredger capacity is capable of providing accelerated completion of the project amounted to 3.31 times faster. The last alternative is to replace the existing grab clamshell, with a grab clamshell bucket capacity of 20 cubic meters. This alternative theory is capable of producing real production amounted to 124.411 cubic meters per hour and were able to complete the project up to week 21, with total sediment dredged as 291.604 cubic meters or equivalent to 102.84% and provides to 2.31 times acceleration.

DATE / WEEK	TRIP	DREDGING	LOCATION	DRED	GING PI	ROCESS	SA	AILING-O	OUT	DIS	SCHAR	GING	5	SAILING	-IN	OBSTR	ACTION	/ DELAYS	WEATHER	INFORMATION
		FROM	то	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE		
Week-1 /																				
03/08/2012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	00.00	20.00	1200	-	Dredger anchored in rede Port of Tanjung Perak; waiting instructions of project manager (1200)
Week-2 /	1	Turnin	- Dania				00.00	01.20	00	01.20	01.40	10	01.40	04.45	195	04.45	24.00	1155		Denders en skand in orde Dent of Testing Dendu uniting for refering (1165)
06/08/2012	1	Turnin	g Dasin	-			00.00	01.50	90	01.30	01.40	10	01.40	04.43	185	04.43	24.00	1155	Sunny	Dredger anchored in rede Port of Tanjung Perak, waiting for redening (1155)
07/08/2012	1	Turnin	g Basin	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440	Sunny	freshwater. (1440')
08/08/2012	1	Turnin	g Basin	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440	Sunny	Dredger anchored in rede Port of Tanjung Perak; Right bulbous repairs and waiting for recharging of freshwater. (1440')
09/08/2012	1	Turnin	g Basin	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440	Sunny	Dredger anchored in rede Port of Tanjung Perak; waiting for 200 tons recharging of freshwater. (1440')
					-	-	-	-	-	-	-	-	-	-	-	00.00	16.20	980		Dredger anchored in rede Port of Tanjung Perak; waiting for lubricant (980')
10/08/2012			. NC 1	15.10	-	-	-	-	-	-	-	-	16.20	17.10	50	-	-	-		-
		Turning B	asin-Mirah	21.40	18.20	70	18.20	19.50	90	1190	1200	10	20.00	21.40	100	-	-	-	Sunny	•
Week-3/	#	Turning D	asin-ivinan	21.40	22.50	70	22.50	24.00	70	-	-		00.00	01.30	90	-	-	-		*
Week-57													00.00	01.50	,,,,				_	
17/08/2012	1	Turning B	asın-Mırah	-	-	-	00.00	01.25	85	01.25	01.35	10	01.35	03.35	120	03.35	24.00	1225	Sunny	Dredger anchored in rede Port of Tanjung Perak; revision of machines and maintenance dredging tool (1225')
18/08/2012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440		Dredger anchored in rede Port of Tanjung Perak; revision of machines and maintenance dredging tool (1440')
19/08/2012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440		Dredger anchored in rede Port of Tanjung Perak; Celebrete Eid Al-Fitr (1440')
Week-4 /																				
20/08/2012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440		Dredger anchored in rede Port of Tanjung Perak; Celebrete Eid Al-Fitr (1440')
21/08/2012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440	Sunny	Dredger anchored in rede Port of Tanjung Perak; Celebrete Eid Al-Fitr (1440)
22/08/2012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440	Sunny	Dredger anchored in rede Port of Tanjung Perak, Celebrete Eld Al-Fili (1440)
22/08/2012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	00.00	17.25	1045	-	Dredger anchored in rede Port of Tanjung Perak; waiting to permit movement of the port authority (1440')
23/08/2012	1	Turning B	asin-Mirah	18.00	19.10	70	19.10	20.30	80	20.30	20.40	10	20.40	22.10	90				Sunny	
	#	Turning B	asin-Mirah	22.10	23.20	70	23.20	24.00	40	-	-		-	-						-
Week-5 /																				
	1	Turning B	asin-Mirah	-	-	-	00.00	01.20	80	01.20	01.30	10	01.30	03.00	90				Sunny	-
	2	Turning B	asin-Mirah	03.00	04.10	70	04.10	05.30	80	05.30	05.40	10	05.40	07.10	90				Sunny	-
27/08/2012	3	Turning B	asin-Mirah	07.10	08.20	70	08.20	09.40	80	09.40	09.50	10	09.50	11.20	90	1100	19.10	10.5	Sunny	
27/08/2012	4	Turning B	asın-Mırah	11.20	12.30	70	12.30	13.50	80	13.50	14.00	10	-	-	- 0.5	14.00	17.15	195	Sunny	Dredger anchored in the dumping area; Fixing dry tank left side (195')
	- 5	- Turning B	asin-Mirah	- 18.40	19.50	- 70	19.50	21.15	85	21.15	21.25	- 10	21.25	23.00	05			-	- Suppy	-
	#	Turning B	asin-Mirah	23.00	24.00	60	-	-	05	-	-	-	-	-	,5	-	-		-	
	1	Turning B	asin-Mirah	00.00	00.10	10	00.10	01.30	80	01.30	01.40	10	01.40	03.10	90	-	-	-	Sunny	-
	2	Turning B	asin-Mirah	03.10	04.20	70	04.20	05.40	80	05.40	05.50	10	05.50	07.20	90	-	-	-	Sunny	-
28/08/2012	3	Turning B	asin-Mirah	07.20	08.30	70	08.30	09.50	80	09.50	10.00	10	10.00	11.30	90	-	-	-	Sunny	-
20/00/2012	4	Turning B	asin-Mirah	11.30	12.40	70	12.40	14.00	80	14.00	14.10	10	14.10	15.40	90	-	-	-	Sunny	-
	5	Turning B	asin-Mirah	15.40	16.50	70	16.50	18.10	80	18.10	18.20	10	18.20	19.55	95	-	-	-	Sunny	-
	6	Turning B	asın-Mırah	19.55	21.05	70	21.05	22.30	85	22.30	22.40	10	-	-	-	22.40	24.00	80	Sunny	Dredger anchored in the dumping area; Seawater cooling repair mains engines right side and left side (80')
	-	-	-	- 03.10	-	-	-	-	-	-	-	-	-	- 08.45	- 135		06.30	390	Sunny	Dredger anchored in the dumping area; Seawater cooling repair mains engines right side and left side (390)
	1	Turning B	asin-Mirah	08.45	09.55	70	09.55	11.15	80	11.15	11.25	10	11.25	12.55	90	-	_	_	Sunny	
29/08/2012	2	Turning B	asin-Mirah	12.55	14.05	70	14.05	15.25	80	15.25	15.35	10	15.35	17.05	90	-	-	-	Sunny	
	3	Turning B	asin-Mirah	17.05	18.15	70	18.15	19.35	80	19.35	19.45	10	19.45	21.20	95	-	-	-	Sunny	-
	4	Turning B	asin-Mirah	21.20	22.30	70	22.30	23.50	80	23.50	24.00	10	-	-	-	-	-	-	Sunny	-
	1	Turning B	asin-Mirah	-	-	-	00.00	01.15	75	01.15	01.25	10	01.25	03.00	95	-	-		Sunny	
	2	Turning B	asin-Mirah	03.00	04.10	70	04.10	05.35	85	05.35	05.45	10	05.45	07.20	95	-	-	-	Sunny	
31/08/2012		Turning B	asin-Miran	07.20	08.30	70	08.30	09.50	80	09.50	10.00	10	-	-	-	10.00	16.15	375	Sunny	Dredger anchored in the dumping area; Fixing dry tank left side (3/5')
	-	Turning B	asin-Mirah	17.50	19.00	- 70	19.00	20.20	- 80	20.20	20.30	- 10	20.30	22.05	95	-	-		- Sunny	
	#	Turning B	asin-Mirah	22.05	23.15	70	23.15	24.00	45	-	-	-	-	-	-	-	-	_	Sumy	
	1	Turning B	asin-Mirah	-	-	-	00.00	00.35	35	00.35	00.45	10	00.45	02.20	95				Sunny	
	2	Turning B	asin-Mirah	02.20	03.30	70	03.30	04.50	80	04.50	05.00	10	05.00	06.40	100				Sunny	
01/09/2012	3	Turning B	asin-Mirah	06.40	07.50	70	07.50	09.15	85	09.15	09.25	10	09.25	10.55	90				Sunny	
01/07/2012	4	Turning B	asin-Mirah	10.55	12.05	70	12.05	13.25	80	13.25	13.35	10	13.35	15.10	95				Sunny	
	5	Turning B	asın-Mırah	15.10	16.20	70	16.20	17.45	85	17.45	17.55	10	22.15	24.00		17.55	23.15	320	Sunny	Dredger anchored in the dumping area; transfer of fuel to Split Barge 54 as much as 5000 liters (320')
	-	-	-	-	-	-	-	-	-	-	-	-	23.15	24.00	45	-	-	-		
		- Turning B	asin-Mirah	00.50	02.20	90	02.20	03 40	80	03 40	03 50	10				03 50	11.20	450	Sunnv	Dredger anchored in the dumning area: Fixing dry tank left side (450')
00/00/00:	-	-	-	-	-	-	-	-	-	-	-	-	11.20	12.55	95	-	-	-		
02/09/2012	2	Turning B	asin-Mirah	12.55	14.25	90	14.25	15.45	80	15.45	15.55	10	15.55	17.30	95	-	-	-	Sunny	
	3	Turning B	asin-Mirah	17.30	19.00	90	19.00	20.25	85	20.25	20.35	10	20.35	22.05	90	-	-	-	Sunny	
	#	Turning B	asin-Mirah	22.05	23.35	90	23.35	24.00	25	-	-	-	-	-	-	-	-	-		

Table A-8. Summary of daily reports for time delays project of TSHD

Table A-8. Continued

DATE / WEEK	TRIP	DREDGING	LOCATION	DRED	GING PH	ROCESS	SA	AILING-O	DUT	DIS	CHARG	SING	s	AILING	IN	OBSTRA	ACTION	/ DELAYS	WEATHER	INFORMATION
		FROM	то	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE		
Week-6 /									00			00			00					
	-	-	-	-	-	-	-	-	-	-	-	-	00.00	00.15	15	-	-	-		
05/09/2012	1	Turning Basin	-Berlian Timur	00.15	01.45	90	01.45	03.15	90	03.15	03.25	10	03.25	05.00	95	-	-	-	Sunny	
	2	Turning Basin	-Berlian Timur	05.00	06.25	85	06.25	07.50	85	07.50	08.00	10	08.00	09.55	115	09.55	24.00	845	Sunny	Dredger anchored in rede Port of Tanjung Perak; revise ME and refueling (845')
06/09/2012	-	-	-	-	-	-	-	-	-	-		-	-	-	-	00.00	24.00	1440	-	Dredger anchored in rede Port of Tanjung Perak; revise ME and refueling (1440')
07/09/2012	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	00.00	24.00	1440	-	Dredger anchored in rede Port of Tanjung Perak; revise ME and refueling (1440)
	-	- Turning Decin	- Portion Timur	- 04.25	-	-	-	-	-	-	-	-	-	- 07.55	- 1.5	00.00	10.20	2/5	Summer	Dredger anchored in rede Port of Tanjung Perak; fixing hydraulic pipes (275)
	1	Turning Dasin		04.55	06.05	90	06.05	07.30	83	07.50	07.40	10	10.20	11.55	15	07.55	10.20	145	Sumry	Diedger anchored in rede Maspion, fixing gearbox ME fight side (145)
08/09/2012	2	- Turning Basin	-Berlian Timur	11.55	13.25	90	13.25	14 50	85	14 50	15.00	10	15.00	16.35	95	-	-	-	Sunny	
	3	Turning Basin	-Berlian Timur	16.35	18.05	90	18.05	19.25	80	19.25	19.35	10	19.35	21.05	90	-	-	_	Sunny	
	-	0		21.05	22.35	90	22.35	24.00	85	-	-	-	-		-	-	-	-	~	
	1	Turning Basin	-Berlian Timur	-	-	-	-	-	-	00.00	00.10	10	00.10	01.45	95	-	-	-	Sunny	
	2	Turning Basin	-Berlian Timur	01.45	03.15	90	03.15	04.50	95	04.50	05.00	10	05.00	06.35	95	-	-	-	Sunny	
00/00/2012	3	Turning Basin	-Berlian Timur	06.35	08.05	90	08.05	09.35	90	09.35	09.45	10	09.45	11.35	110	11.35	15.30	235	Sunny	Dredger anchored in rede Port of Tanjung Perak; waiting for recharging of freshwater. (235')
09/09/2012	-	-	-	-	-	-	-	-	-	-	-	-	15.30	15.45	15	-	-	-		
	4	Turning Basin	-Berlian Timur	15.45	17.15	90	17.15	18.50	95	18.50	19.00	10	19.00	20.35	95	-	-	-	Sunny	
	5	Turning Basin	-Berlian Timur	20.35	22.05	90	22.05	23.35	90	23.35	23.45	10	23.45	24.00	15	-	-	-	Sunny	
Week-7 /																				
	-	-	-	-	-	-	-	-	-	-	-	-	00.00	01.25	85	-	-	-		
	1	Turning Basin	-Berlian Timur	01.25	02.55	90	02.55	04.15	80	04.15	04.25	10	04.25	05.55	90	-	-	-	Sunny	
10/09/2012	2	Turning Basin	-Berlian Timur	05.55	07.25	90	07.25	08.45	80	08.45	08.55	10	08.55	10.35	100	10.35	15.10	275	Sunny	Dredger anchored in rede Port of Tanjung Perak; waiting for recharging of freshwater. (275')
	-	- T ' D '	- D. 1'. T'.	-	-	-	-	-	-	-	-	-	15.10	15.25	15	-	-	-	0	
	3	Turning Basin Turnin - Davin	-Berlian Timur	15.25	16.55	90	16.55	18.15	80	18.15	18.25	10	18.25	20.00	95	-	-	-	Sunny	
	4	Turning Dasin		20.00	21.50	90	21.50	22.33	83	22.33	25.05	10	23.03	24.00	33 80	-	-	-	Sunny	
	-	- Turning Basin	- Berlian Timur	01.20	02.50		02.50	04.15	- 85	- 04.15	04.25	- 10	04.25	01.20	90	-	-	-	Sunny	
	1	ranning Dasin	-Dernan Tinai	01.20	02.50	,0	02.50	04.15	85	04.15	04.25	10	04.25	05.55	70	-	-		Sumy	
13/09/2012	2	Turning Basin	-Berlian Timur	05.55	07.25	90	07.25	08.55	90	08.55	09.05	10	09.05	09.10	05	09.10	16.20	430	Sunny	Dredger anchored in rede Maspion; fixing the pump housing right side, broken of bolt wearing plates (145')
	-	-	-	-	-	-	-	-	-	-	-	-	16.20	17.55	95	-	-	-		
	3	Turning Basin	Berlian Timur	17.55	19.20	85	19.20	20.50	90	20.50	21.00	10	21.00	22.30	90	-	-	-	Sunny	
	-	Turning Basin	-Berlian Timur	22.30	24.00	90	-	-	-	-	-	-	-	-	-	-	-	-		
	1	Turning Basin	-Berlian Timur				00.00	01.25	85	01.25	01.35	10	01.35	03.10	95				Sunny	
	2	Turning Basin	-Berlian Timur	03.10	04.25	75	04.25	05.45	80	05.45	05.55	10	05.55	07.25	90				Sunny	
14/09/2012	3	Turning Basin	-Berlian Timur	07.25	08.40	75	08.40	10.00	80	10.00	10.10	10	10.10	11.40	90	11.40	15.30	230	Sunny	Anchoring on Tg. Perak's basin for repairing loading Valve gate and Friday pray (230')
	-		D I' T'								10.00		15.30	15.45	15					
	4	Turning Basin Turnin - Davin	-Berlian Timur	15.45	17.00	75	17.00	18.20	80	18.20	18.30	10	18.30	20.00	90				Sunny	
Wash 8 /	3	Turning Basin	-Bernan Timur	20.00	21.15	/5	21.15	22.35	80	22.35	22.45	10	22.45	24.00	/5				Sunny	
WCCK-0/	1	Turning Basin	- Berlian Timur	00.00	01.15	75	01.15	02.35	80	02.35	02.45	10	02.45	04.15	90				Suppy	
	2	Turning Basin	-Berlian Timur	04.15	05.30	75	05.30	06.50	80	06.50	07.00	10	07.00	08.35	95				Sunny	
	3	Turning Basin	-Berlian Timur	08.35	09.50	75	09.50	11.15	85	11.15	11.25	10	11.25	12 55	90	12.55	16 30	215	Sunny	Anchoring at T.g. Perak's Basin for waiting procurenment and renairment of Turbo filter charge generator no. 2 (215)
17/09/2012	5			00.55	07.50	10	07.50		00	11.10	11.20	10	16.30	16.45	15	12.00	10.50	210	Sunny	
	4	Turning Basin	-Berlian Timur	16.45	18.00	75	18.00	19.25	85	19.25	19.35	10	19.35	21.05	90				Sunny	
	5	Turning Basin	-Berlian Timur	21.05	22.20	75	22.20	23.30	70	23.30	23.40	10	23.40	00.00	20				Sunny	
													00.00	01.10	70					
18/09/2012	1	Turning Basin	-Berlian Timur	01.10	02.25	75	02.25	03.50	85	03.50	04.00	10	04.00	05.35	95				Sunny	
	2	Turning Basin	-Berlian Timur	05.35	06.50	75	06.50	08.15	85	08.15	08.25	10	08.25	10.10	105	10.10	00.00	830	Sunny	Anchoring at Tg. Perak basin for waiting lubricant (830')
19/09/2012																00.00	00.00	1440		Anchoring at Tg. Perak basin for waiting lubricant (1440')
20/09/2012																00.00	13.50	830		Anchoring at Tg. Perak basin for waiting lubricant (830')
	1	Turning Basin	-Berlian Timur				00.00	01.20	80	01.20	01.30	10	01.30	03.00	90				Sunny	
	2	Turning Basin	-Berlian Timur	03.00	04.15	75	04.15	05.35	80	05.35	05.45	10	05.45	07.20	95				Sunny	
21/00/2012	3	I urning Basin	-Berlian Limur	07.20	08.35	75	08.35	10.00	85	10.00	10.10	10	10.10	11.40	90	11.40	14.15	155	Sunny	Anchoring at Tg. Perak's basin for Friday pary (155')
21/09/2012		Turning Day's	Darlian Tim	14.30	15.45	75	15.45	17.05	00	17.05	17.16	10	14.15	14.30	15				e	
	4	Turning Basin	-Defiian Timur	14.30	15.45	75	15.45	17.05	80	17.05	17.15	10	17.15	18.50	95				Sunny	
	2	Turning Basin	-Berlian Timur	18.50	20.05	/ 3 50	20.05	21.50	60	21.30	21.40	10	21.40	25.10	90				Sunny	
		· arming Dasill	Serman Tinilui	£3.10	14-T.00.00	50		1	1				1			1				1

Table A-8. Continued

DATE / WEEK TRIP	DREDGING	LOCATION	DRED	GING PI	ROCESS	S.	AILING-0	DUT	DIS	SCHAR	GING		SAILING	-IN	OBSTRA	ACTION	/ DELAY	S WEATHER	INFORMATION					
	FROM	то	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUT	E START	STOP	MINUTH	3						
Week-9 /																								
-												00.00	01.0	5 65										
1	Turning Basin	-Berlian Timur	01.05	02.20	75	02.20	03.45	85	03.45	03.55	10	03.55	05.3	95				Sunny						
2	Turning Basin	-Berlian Timur	05.30	06.45	75	06.45	08.10	85	08.10	08.20	10	08.20	09.5	90	09.50	12.20	150	Sunny	Anchoring at Maspion's basin for repair parent engine cooling pump (150')					
25/09/2012 -												12.20	13.5	90										
3	Turning Basin	-Berlian Timur	13.50	15.05	75	15.05	16.25	80	16.25	16.35	10	16.35	18.1	95										
4	Turning Basin	-Berlian Timur	18.10	19.25	75	19.25	20.50	85	20.50	21.00	10	21.00	22.3	5 95				Sunny						
-	Turning Basin	-Berlian Timur	22.35	23.50	75	23.50	24.00.00	10										Sunny						
]	Turning B	asin-Mirah				00.00	01.05	65	01.05	01.15	10	01.15	02.5) 95				Sunny						
2	Turning B	asin-Mirah	02.50	04.05	75	04.05	05.30	85	05.30	05.40	10	05.40	07.1	90				Sunny						
20/00/2012	Turning B	asin-Mirah	07.10	08.25	75	08.25	09.50	85	09.50	10.00	10	10.00	11.3	5 95	11.35	16.00	265	Foggy	anchoring at Tg perak Basin for changging left wire rope trunion, & Friday pray (265')					
28/09/2012 -												16.00	16.1	5 15										
4	Turning B	asin-Mirah	16.15	17.30	75	17.30	18.55	85	18.55	19.05	10	19.05	20.4	95				Sunny						
5	Turning B	asin-Mirah	20.40	21.55	75	21.55	23.15	80	23.15	23.25	10	23.25	24.00.0	35				Sunny						
Week-10 /																								
02/10/2012 -									00.00	01.25	85	01.25	24.00.0	1355					Ship anchoring at Tg Perak's basin for ME revision, drigging member and refueling Ship anchoring at Tg Perak's basin for ME revision, drigging member and refueling and refueling fresh water					
03/10/2012												00.00	24.00.0) 1440					Ship anchoring at Tg Perak's basin for ME revision, drigging member and refueling Ship anchoring at Tg Perak's basin for ME revision, drigging member and refueling and refueling fresh water Ship anchoring at Tg Perak's basin for refueling fresh water (990)					
-															00.00	16.30	990		Ship anchoring at Tg Perak's basin for refueling fresh water (990')					
-												16.30	16.4	5 15										
04/10/2012	Turning Basin	-Berlian Timur	16.45	17.55	70	17.55	19.20	85	19.20	19.30	10	19.30	21.0	90				Sunny						
2	Turning Basin	-Berlian Timur	21.00	22.10	70	22.10	23.30	80	23.30	23.40	10	23.40	24.00.0	20				Sunny						
-												00.00	01.1	5 75				-						
1	Turning Basin	-Berlian Timur	01.15	02.25	70	02.25	03.55	90	03.55	04.05	10	04.05	05.4) 95				Sunny						
2	Turning Basin	-Berlian Timur	05.40	06.50	70	06.50	08.15	85	08.15	08.25	10	08.25	10.1	5 110	10.15	14.50	275	Sunny	Ship anchoring ata tg. Perak's basin for drop in oxygen bottle and Friday pray (275')					
05/10/2012 -												14.50	15.0	5 15				-						
3	Turning Basin	-Berlian Timur	15.05	16.15	70	16.15	17.40	85	17.40	17.50	10	17.50	19.2	5 95				Sunny						
4	Turning Basin	-Berlian Timur	19.25	20.35	70	20.35	22.00	85	22.00	22.10	10	22.10	23.4	5 95				Sunny						
-	Turning Basin	-Berlian Timur	23.45	24.00.00	15									00				-						
Week-11 /																								
11/10/2012	Furning Basin	Jamrud selatan	00.00	00.25	25	00.25	01.45	80	01.45	01.55	10	01.55	03.2	5 90				Sunny						
11/10/2012	Furning Basin	Jamrud selatan	03.25	04.35	70	04.35	06.00	85	06.00	06.10	10	06.10	07.5	5 105	07.55	24.00.00	965	Sunny	Anchoring at Tg Perak's Basin for waiting lubricant oil (965')					
12/10/2012															00.00	24.00.00	1440		Anchoring at Tg Perak's Basin for waiting lubricant oil (1440')					
13/10/2012															00.00	24.00.00	1440		Anchoring at Tg Perak's Basin for waiting lubricant oil (1440')					
14/10/2012															00.00	24.00.00	1440		Anchoring at Tg Perak's Basin for waiting lubricant oil (1440')					
Week-12 /																								
15/10/2012															00.00	24.00.00	1440		Anchoring at Tg Perak's Basin for waiting lubricant oil (1440')					
															00.00	14.20	860		Anchoring at Tg Perak's Basin for waiting lubricant oil (860')					
												14.20	14.3:	5 15										
16/10/2012	Furning Basin-	Jamrud selatan	14.35	15.45	70	15.45	17.20	95	17.20	17.30	10	17.30	19.0	90				Sunny						
2	Furning Basin	Jamrud selatan	19.00	20.10	70	20.10	21.40	90	21.40	21.50	10	21.50	23.2	90				Sunny						
-	Furning Basin-	Jamrud selatan	23.20	24.00.00	40																			
1	Furning Basin	Jamrud selatar				00.00	00.20	20	00.20	00.30	10	00.30	01.5	5 85				Sunny						
2	Furning Basin	Jamrud selatan	01.55	03.05	70	03.05	04.30	85	04.30	04.40	10	04.40	06.1	90				Sunny						
3	Furning Basin	Jamrud selatan	06.10	07.20	70	07.20	08.40	80	08.40	08.50	10	08.50	10.3	0 100	10.30	14.15	225	Sunny	Anchoring at Tg Perak's Basin for repairment of right loading valve & Hyd. Bottom door no. 7 left side (225)					
19/10/2012												14.15	14.4	5 30										
4	Furning Basin	Jamrud selatan	14.45	15.55	70	15.55	17.30	95	17.30	17.40	10	17.40	19.10	90				Sunny						
5	Furning Basin	Jamrud selatan	19.10	20.20	70	20.20	21.50	90	21.50	22.00	10	22.00	23.2	5 85				Sunny						
-	Furning Basin	Jamrud selatan	23.25	24.00.00	35																			

Table A-8. Continued

DATE / WEEK	TRIP	DREDGING	LOCATION	DREI	OGING PI	ROCESS	S.	AILING-0	UT	DIS	CHAR	GING	5	SAILING-I	N	OBSTRA	CTION	/ DELAYS	WEATHER	INFORMATION
		FROM	то	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE		
Week-13 /																				
	1	Turning Basin-	Berlian Timur				00.00	00.45	45	00.45	00.55	10	00.55	02.25	90				Sunny	
	2	Turning Basin-	Berlian Timur	02.25	03.35	70	03.35	05.00	85	05.00	05.10	10	05.10	06.45	95				Sunny	
24/10/2012	3	Turning Basin-	Berlian Timur	06.45	07.55	70	07.55	09.25	90	09.25	09.35	10	09.35	11.35	120	11.35	15.50	255	Sunny	Anchoring at Tg, Perak's Basin for repairment of left dredging pump and refueling (255')
24/10/2012													15.50	16.25	35					
	4	Turning Basin-	Berlian Timur	16.25	17.35	70	17.35	19.00	85	19.00	19.10	10	19.10	20.40	90				Sunny	
	5	Turning Basin-	Berlian Timur	20.40	21.50	70	21.50	23.10	80	23.10	23.20	10	23.20	24.00.00	40				Sunny	
	-												00.00	00.55	55					
25/10/2012	1	Furning Basin	Jamrud selatan	00.55	02.05	70	02.05	03.25	80	03.25	03.35	10	03.35	05.05	90				Sunny	
25/10/2012	2	Furning Basin-	Jamrud selatan	05.05	06.15	70	06.15	07.40	85	07.40	07.50	10	07.50	09.25	95				Sunny	
	3	Furning Basin	Jamrud selatan	09.25	10.35	70	10.35	12.00	85	12.00	12.10	10	12.10	14.10	120	14.10	24.00.00	590	Sunny	Anchoring at Tg, Perak's Basin for repairment of left dredging pump and refueling (590')
26/10/2012																00.00	24.00.00	1440		Anchoring at Tg, Perak's Basin, National holiday for Idul Adha 1433 H (1440')
																00.00	09.35	575		Anchoring at Tg, Perak's Basin, preparation for dredging operation (575')
													09.35	10.05	30					
27/10/2012	1	Furning Basin-	Jamrud selatan	10.05	11.15	70	11.15	12.35	80	12.35	12.45	10	12.45	14.15	90				Sunny	
27/10/2012	2	Furning Basin-	Jamrud selatan	14.15	15.25	70	15.25	16.50	85	16.50	17.00	10	17.00	18.35	95				Sunny	
	3	Furning Basin	Jamrud selatan	18.35	19.45	70	19.45	21.10	85	21.10	21.20	10	21.20	22.50	90				Sunny	
	-	Furning Basin	Jamrud selatan	22.50	24.00.00	70														
Week-14 /																				
	1	Turning Ba	isin-Mirah				00.00	00.30	30	00.30	00.40	10	00.40	02.10	90				Sunny	
	2	Turning Ba	isin-Mirah	02.10	03.20	70	03.20	04.40	80	04.40	04.50	10	04.50	06.25	95				Sunny	
02/11/2012	3	Turning Ba	asin-Mirah	06.25	07.35	70	07.35	09.00	85	09.00	09.10	10	09.10	10.50	100	10.50	14.05	195	Cloudy	Ship anchoring at Tg. Perak's basin for Friday pray (195')
	-												14.05	14.20	15					
	4	Turning Ba	isin-Mirah	14.20	15.30	70	15.30	16.50	80	16.50	17.00	10	17.00	18.35	95				Sunny	
	5	Turning Ba	isin-Mirah	18.35	19.45	70	19.45	21.10	85	21.10	21.20	10	21.20	23.25	125	23.25	24.00.00	35	Sunny	Ship anchoring at Tg. Perak's basin for ME revision and dredging members (35')
03/11/2012																00.00	24.00.00	1440		Ship anchoring at Tg. Perak's basin for ME revision, dredging members and refueling bunker and fresh water (1440)
04/11/2012																00.00	24.00.00	1440		Ship anchoring at Tg. Perak's basin for ME revision, dredging members and refueling bunker and fresh water (1440')
Week-15 /																				
															• •	00.00	05.50	350		Ship anchoring at 1g. Perak's basin due to high wind (350')
			5 X14 - 491			- 0							05.50	06.10	20				~ .	
05/11/2012	1	Turning Basin-	- Nilam Timur	06.10	07.20	70	07.20	08.40	80	08.40	08.50	10	08.50	10.20	90				Cloudy	
05/11/2012	2	Turning Basin-	- Nilam Limur	10.20	11.30	70	11.30	12.55	85	12.55	13.05	10	13.05	14.40	95				Cloudy	
	3	Turning Basin-	- Nilam Limur	14.40	15.50	70	15.50	17.10	80	17.10	17.20	10	17.20	18.50	90				Cloudy	
	4	Turning Basin-	- Jamrud Selat	18.50	20.00	70	20.00	21.25	85	21.25	21.35	10	21.35	23.10	95				Sunny	
	- 1	Turning Basin-	- Nilam Timur	23.10	24.00.00	50	00.00	00.50	50	00.50	01.00	10	01.00	02.20	00				Clauder	
	1	Turning Basin-	Jammud Selat	an 02.20	02.40	70	00.00	00.30	30	00.30	01.00	10	01.00	02.50	90				Cloudy	
	2	Turning Basin-	Nilam Timur	02.50	05.40	70	05.40	05.05	85	05.05	05.15	10	05.15	11.10	95	11.10	14.20	200	Cloudy	China and anima of Tal Barriela Davia for Evidence and Lifeira Lubricant ail (2001)
09/11/2012	5	Turning Basin-	- INITATITI I ITTIUI	06.50	08.00	/0	08.00	09.20	80	09.20	09.30	10	14.20	11.10	15	11.10	14.50	200	Cloudy	Ship anchoring at 1g. Perak's Basin for Friday pray and fitting fubricant on (200)
09/11/2012	- 4	Turning Pagin	Nilom Timur	14.45	15.55	70	15.55	17.20	85	17.20	17.20	10	17.20	14.45	05				Cummy	
	-4	Turning Basin-	Nilom Timur	14.45	20.15	70	20.15	21.40	85	21.40	21.50	10	21.50	22.25	95				Sunny	
	3	Turning Basin-	Inmrud Salat	19.05	20.13	25	20.13	21.40	85	21.40	21.50	10	21.50	23.23	95				Sumry	
-	-	Turning Dasin-	- Janii uu Selau	23.23	24.00.00	35							00.00	01.00	60					
	1	Turning Basin	Jamrud Selat	01.00	02.10	70	02.10	03 35	85	03 35	03.45	10	03.45	05.15	90				Cloudy	
	2	Turning Basin	Nilam Timur	05.15	06.25	70	06.25	07.45	80	07.45	07.55	10	07.55	09.15	95				Cloudy	
11/11/2012	2	Turning Basin	Nilam Timur	09.15	10.40	70	10.40	12.05	85	12.05	12.15	10	12.15	12 35	20	12 30	14 55	145	Cloudy	Anchoring at Masnion basin for changing lubricant oil of generator no 2.8 repair productic systems (145).
	-	- anning Dasin-	un innu	07.50	10.40	70	10.40	12.00	05	12.05	12.15	10	14.55	16 30	95	12.50	14.55	145	cloudy	n menoring a maspion oasin for enanging noricant on or generator no. 2 to repair phetinatic systems (145)
	4	Turning Basin-	- Jamrud Selat	16 30	17 40	70	17 40	19.05	85	19.05	1915	10	19.15	20.00	45				cloudy	
	5	Turning Basin-	- Jamrud Selat	20.50	22.00	70	22.00	23.25	85	23.25	23.35	10	23.35	24.00.00	25				cloudy	

Table A-8.	Continued
------------	-----------

DATE / WEEK	TRIP	DREDGING	LOCATION	DRED	GING PH	ROCESS	SA	AILING-O	DUT	DIS	CHAR	GING	s	AILING	·IN	OBSTR	ACTION	/ DELAYS	WEATHER	INFORMATION
		FROM	то	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTE	START	STOP	MINUTI	E START	STOP	MINUTE		
Week-16 /																				
	1	Turning Basin-	 Nilam Timur 				00.00	00.50	50	00.50	01.00	10	01.00	06.15	315				Sunny	
	2	Turning Basin-	 Nilam Timur 	06.15	07.25	70	07.25	08.50	85	08.50	09.00	10	09.00	10.30	90				Cloudy	
14/11/2012	3	Turning Basin-	 Nilam Timur 	10.30	11.40	70	11.40	13.05	85	13.05	13.15	10	13.15	14.45	90				Cloudy	
	4	Turning Basin-	 Nilam Timur 	14.45	15.55	70	15.55	17.15	80	17.15	17.25	10	17.25	19.00	95				Cloudy	
	5	Turning Basin	Jamrud Selat	19.00	20.10	70	20.10	21.35	85	21.35	21.45	10	21.45	23.35	110	23.35	24.00.00	25	Cloudy	Anchoring at Tg. Perak's basin for celebrating new islamic year 1434 Hijriyah (25')
15/11/2012																00.00	24.00.00	1440		Anchoring at Tg. Perak's basin for celebrating new islamic year 1434 Hijriyah (1440')
15/11/2012 1 Turning Basin- Jamrud Sel 16/11/2012 - -													00.00	00.55	55					
	1	Turning Basin-	- Jamrud Selat	00.55	02.05	02.05 70 02.05 06.35 70 06.35 15.10 70 15.10		03.40	95	03.40	03.50	10	03.50	05.25	95					
1 1 Turning Basin- Jamrud Selat 16/11/2012 2 Turning Basin- Nilam Timur		05.25	06.35	70	06.35	08.05	90	08.05	08.15	10	08.15	10.40	145	10.40	13.20	160		Anchoring at Tg. Perak's basin for Friday pray (160')		
10/11/2012	-												13.20	14.00	40					
	3	Turning Basin-	Jamrud Selat	14.00	15.10	70	15.10	16.45	95	16.45	16.55	10	16.55	18.30	95					
	4	Turning Basin-	- Nilam Timur	18.30	19.40	70	19.40	21.10	90	21.10	21.20	10	21.20	23.40	140	23.40	24.00.00	20		Anchoring at Tg. Perak's basin for prepare engine revision and deck department (20')
16/11/2012 16/11/2012 16/11/2012 16/11/2012 16/11/2012 17/11/2012														00.00	24.00.00	1440		Anchoring at Tg. Perak's basin for ME revision, dredging personel and waiting for refueling bunker (1440')		
18/11/2012																00.00	24.00.00	1440		Anchoring at Tg. Perak's basin for ME revision, dredging personel and waiting for refueling bunker (1440')
Week-17 /																				
19/11/2012																00.00	24.00.00	1440		Anchoring at Tg. Perak's basin for ME revision, dredging personel and waiting for refueling bunker (1440')
20/11/2012																00.00	24.00.00	1440		Anchoring at Tg. Perak's basin for waiting procurement of lubricant oil (1440')
21/11/2012																00.00	24.00.00	1440		Anchoring at Tg. Perak's basin for waiting procurement of lubricant oil (1440')
22/11/2012																00.00	24.00.00	1440		Anchoring at Tg. Perak's basin for waiting procurement of lubricant oil (1440')
23/11/2012																00.00	24.00.00	1440		Anchoring at Tg. Perak's basin for waiting procurement of lubricant oil (1440')
	-															00.00	13.35	815		Anchoring at Tg. Perak's basin for waiting procurement of lubricant oil (815')
	-												13.35	13.50	15					
24/11/2012	1	Turning Basin	Nilam Timur	13.50	15.00	70	15.00	16.25	85	16.25	16.35	10	16.35	18.10	95				Cloudy	
	2	Turning Basin-	Nilam Timur	18.10	19.20	70	19.20	20.45	85	20.45	20.55	10	20.55	22.25	90				Cloudy	
	-	Turning Basin-	Nilam Timur	22.25	23.35	70	23.35	24.00.00	25											

Table A-8 is a summary of daily reports for time delays project of TSHD where previously had been filtering and only on the date and time delays in project implementation. These data are useful in identifying the dominant cause of delays, which is expected to be given a completion of the issue based on required by the project. The results can be seen in Table 26.

Table A-9. Results of laboratory test for the type of soil in the dredging project

107

Table A-10. Results of laboratory test for the concentration of silt

	(ALLER MADE)	PT. (Perse KK. "	o) RUKINDO JAKA KALIMANTAN II	RTA		
		PENGUKURAN KAD	DAR LUMPUR DAL	AM BAK		
	HARI TANGGAL JAM KAPAL KERUK LOKASI SPOT JENIS TANAH	SABTU 25-Aug-12 09:30 LT KK * KALIMANTAN B* KOLAM PELABUHAN TG TURNING BASIN S/D M TANAH LIAT DAN LUMPI	PERAK SURABAYA IRAH JR		LEMBAR	1 No : 23
1234	Berat Jenis air Berat Gelas Kosong Volume Pengambilan lumpur di ba	sk	1. Muka, tengah, be	025 Gran 506 Gran 000 mil leikang	m/mi m	
No	Berat d	alam Gram	Volume	1	BJ Lumpur	Keterangan
-	Gelas + Lumpur	Lumpur	(mi)	-	1.159	
23456	1652 1658 1658 1662 1683 1659	1156 1152 1156 1187 1187	1000 1000 1000 1000 1000		1,156 1,152 1,156 1,157 1,153	
-		Jumlah I	Serat Jenis	=	6.933	Gram / mi
	Berat Jenis Lumpur Rata	rata	= Jumleh BJ 6		6.933 6 1.155	Gram / ml
Berat Berat Berat Jerat /olun /olun /olun	Gelas s Gelas + Air Gelas + Air + Tanah Dasa Tanah Dasar ne Air (dalam gelas) ne Air + Tanah Dasar ne Tanah Dasar				506 1114 1384 270 600 800 200	Gram Gram Gram Gram ni mi mi mi
	BJ Tanah Dasar	 Berat Tanah Dasar Volume Tanah Dasar 		÷	270 200 1,35	Gram mi Gram / mi
	Konsentrasi kadar lumpu	r dalam bak.				
						of the second seco

APPENDIX B

TRAILING SUCTION HOPPER DREDGE AND GRAB CLAMSHELL COST ESTIMATION

	Estin	nates	6 C	of Fue	I Co	onsu	mption	for Daily	Oper	atior	າຣ		
					Dre	dger T	ypes of TS	HD					
1.	TSHD Type 5.000 m3		-										
	a. Main Engine :	2	х	3.950	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	37.920.00	Ltr
	b. Dredge Pump :	(di co	upl	e dengar	n Main	Engine	e)						
	c. Generator :	3	х	670	HP x	165	ar/HP/hr x	24	Hours :	0.85	=	9.364.24	Ltr
							3					47.284.24	Ltr
							The assume	tion of an ave	erade en	40%	=	18.913.69	Ltr
								rounded			=	19.000.00	Ltr
	Mob/Demob												
	a. Main Engine :	2	х	3.950	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	37.920.00	Ltr
	b. Dredge Pump :						-						
	c. Generator :	2	х	670	HP x	165	gr/HP/hr x	24	Hours :	0.85	=	6.242.82	Ltr
											=	44.162.82	Ltr
							The assump	tion of an ave	erage en	40%	=	17.665.13	Ltr
								rounded			=	17.700.00	Ltr
2.	TSHD Type 4.000 m3												
	a. Main Engine :	2	х	1.795	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	17.232.00	Ltr
	b. Dredge Pump :	2	х	898	HP x	163	gr/HP/hr x	8	Hours :	0.85	=	2.755.28	Ltr
	c. Generator :	2	х	544	HP x	165	gr/HP/hr x	24	Hours :	0.85	=	5.068.80	Ltr
											-	25.056.08	Ltr
				The ass	umptic	on of an	average eng	gine power		65%	=	16.286.45	Ltr
								rounded			=	16.280.00	Ltr
	Mob/Demob												
	a. Main Engine :	2	х	1.795	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	17.232.00	Ltr
	b. Dredge Pump:	0	х	898	HP x	163	gr/HP/hr x	8	Hours :	0.85	=	0.00	Ltr
	c. Generator :	1	x	544	HP x	165	gr/HP/hr x	24	Hours :	0.85	=	2.534.40	Ltr
											=	19.766.40	Ltr
				The ass	umptic	on of an	average eng	gine power	65%		=	12.848.16	Ltr
						rounde	ed				=	12.848.00	Ltr

At this stage, dredging cost estimate is calculated by following the regulations of the Indonesian republic transport ministry. Because some cost parameters that have been set in advance, and force in 2011, such as vessel rental costs, amounting to IDR 18,233,539 (this includes insurance costs, an estimate of depreciation, and salaries of the crew of the dredger). The next is the price of fuel amounting to IDR 9.664 per litre, the price of lubricants amounted to IDR 50,000 per litre, the number of working days in a year of 216

calendar days, costing over dredging of 20%, assuming an average power ship engines, costs P & I insurance, H & M insurance, crew salary, etc.

Table B-1. Continued

3.	TSHD Type 2900 m3											
	a. Main Engine :	2	х	2.100	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	20.160.00 Ltr
	b. Dredge Pump :	2	х	820	HP x	163	gr/HP/hr x	8	Hours :	0.85	=	2.515.95 Ltr
	c. Generator :	2	х	820	HP x	165	gr/HP/hr x	24	Hours :	0.85	=	7.640.47 Ltr
				T I				•		F00 /		30.316.42 Ltr
				The ass	umptic	n of an	average enç	gine power		50%	=	15.158.21 Ltr
	Mah/Damah							rounded			=	15.158.00 Ltr
		0		0.400		470		~ ~ ~		0 0F	·	00 400 00 11
	a. Main Engine :	2	х	2.100	нр х	170	gr/HP/nr x	24	Hours :	0.85	=	20.160.00 Ltr
	b. Dredge Pump :					405		~ ~ ~		~ ~=		0 000 0 4 1 4
	c. Generator :	1	Х	820	HP X	165	gr/HP/hr x	24	Hours :	0.85	=	3.820.24 Ltr
											=	23.980.24 Ltr
				The ass	umptio	n of an	average eng	gine power	50%		=	11.990.12 Ltr
								rounded			=	11.990.00 Ltr
4.	TSHD Type 2000 m3											
	a. Main Engine :	2	х	2.100	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	20.160.00 Ltr
	b. Dredge Pump :	2	x	550	HP x	163	ar/HP/hr x	8	Hours :	0.85	=	1.687.53 Ltr
	c. Generator :	2	x	729	HP x	165	ar/HP/hr x	24	Hours :	0.85	=	6.792.56 Ltr
							J				=	28.640.09 Ltr
				The ass	umptia	n of an	average end	aine power		45%	=	12.888.04 Ltr
							<u> </u>	rounded			=	12.800.00 Ltr
	Mob/Demob											
	a. Main Engine :	2	x	2.100	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	20.160.00 Ltr
	b. Dredge Pump :						J					
	c. Generator :	1	х	729	HP x	165	gr/HP/hr x	24	Hours :	0.85	=	3.396.28 Ltr
											_	23 556 28 l tr
											-	23.330.20 Lu
				The ass	umptio	n of an	average eng	gine power	45%		=	10.600.33 Ltr
							rounded				=	10.600.00 Ltr
5.	TSHD Type 1000 m3											
	a. Main Engine :	2	х	846	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	8.121.60 Ltr
	b. Dredge Pump :	1	х	400	HP x	163	gr/HP/hr x	8	Hours :	0.85	=	613.65 Ltr
	c. Generator :	2	х	300	HP x	165	gr/HP/hr x	24	Hours :	0.85	=	2.795.29 Ltr
												11.530.54 Ltr
							The assump	tion of an ave	erage en	70%	=	8.071.38 Ltr
								rounded			=	8.070.00 Ltr
	Mob/Demob											
	a. Main Engine :	2	x	846	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	8.121.60 Ltr
	b. Dredge Pump :						-					
	c. Generator :	1	х	300	HP x	165	gr/HP/hr x	24	Hours :	0.85	=	1.397.65 Ltr
											=	9.519.25 Ltr
					The a	ssump	tion of an ave	erade endine	power		=	6.663.47 tr
				1	round	led					=	6.663.00 Ltr

Table B-1. Continued

					Dredge	er Typ	es of Clam	shell					
1.	Clamshell Type 5,5 m3				Ĭ								
	a. Main Engine :	1	х	400	HP x	180	gr/HP/hr x	18	Hours :	0.85	=	1.524.71	Ltr
	b. Gen. Crane :	1	х	100	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	480.00	Ltr
	c. Hydraulic :	1	х	50	HP x	170	gr/HP/hr x	18	Hours :	0.85	=	180.00	Ltr
	d. 2 Split Barge:	4	х	290	HP x	170	gr/HP/hr x	9	Hours :	0.85	=	2.088.00	Ltr
	e. 1 Tug Boat :	1	х	290	HP x	180	gr/HP/hr x	9	Hours :	0.85	=	552.71	Ltr
												4.825.41	Ltr
					The a	ssump	tion of an ave	erage engine	power	75%	=	3.619.06	Ltr
								rounded			=	3.620.00	Ltr
	Mob/Demob												
	a. Main Engine :	2	х	290	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	2.784.00	Ltr
	b. Generator Crane :	1	х	50	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	240.00	Ltr
	e. 1 Tug Boat :	1	х	350	HP x	180	gr/HP/hr x	9	Hours :	0.85	=	667.06	Ltr
											=	3.691.06	Ltr
					The a	ssump	tion of an ave	erage engine	75%		=	2.768.29	Ltr
	• • • • • • • •							rounded			=	2.768.00	Ltr
2.	Clamshell Type 20 m3												
	a. Main Engine :	1	х	1.139	HP x	180	gr/HP/hr x	18	Hours :	0.85	=	4.341.60	Ltr
	b. Generator Crane :	1	х	100	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	480.00	Ltr
	c. 2 Split Barge:	4	х	350	HP x	170	gr/HP/hr x	9	Hours :	0.85	=	2.520.00	Ltr
	d. 1 Tug Boat :	2	х	350	HP x	180	gr/HP/hr x	9	Hours :	0.85	=	1.334.12	Ltr
												8.675.72	Ltr
					The a	ssump	tion of an ave	erage engine	power	75%	=	6.506.79	Ltr
								rounded			=	6.506.00	Ltr
	Mob/Demob												
	a. Main Engine :	2	х	1.139	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	10.934.40	Ltr
······	b. Gen. Crane :	1	х	100	HP x	170	gr/HP/hr x	24	Hours :	0.85	=	480.00	Ltr
	d. 1 Tug Boat :	2	х	350	HP x	180	gr/HP/hr x	9	Hours :	0.85	=	1.334.12	Ltr
											=	12.748.52	Ltr
				The ass	umptio	n of an	average eng	gine power	75%		=	9.561.39	Ltr
1							rounded				=	9.561.00	Ltr

	Estimates	s of L	ub	ricant	s Co	nsum	ption for D	aily	Operat	ions	
				Dre	edger	Types of	TSHD				
1	TSHD 5000										
1.	10110 3000										
	a. Main Engine	2	x	3.950	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	777.36	Ltr
	b. Dredge Pump	(di co	uple	dengan N	/lain Er	ngine)					
	c. Generator	3	x	670	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	159.19	Ltr
									=	936.55	
		The a	ssur	nption of a	an aver	age engin	e power	40%	=	374.62	Ltr
				1		rounded			=	375.00	Ltr
	Mobilization/Dem	obilizat	ion	TSHD 50	00						
	a. Main Engine	2	x	3.950	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	777.36	Ltr
	b. Dredge Pump	(di co	uple	dengan N	<i>l</i> lain Er	ngine)					
	c. Generator	2	x	670	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	106.13	Ltr
									=	883.49	Ltr
			The	assumpti	on of a	in average	engine power	40%	=	353.40	Ltr
				•		0	rounded		=	353.00	Ltr
2.	TSHD 4000										
	a. Main Engine	2	х	1.795	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	353.26	Ltr
	b. Dredge Pump	2	х	898	HP x	0.0033	Ltr/HP/Hours x	8	Hours =	47.41	Ltr
	c. Generator	2	х	544	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	86.17	Ltr
										486.84	Ltr
			The	assumpti	on of a	in average	engine power	65%	=	316.45	Ltr
						Ŭ	rounded		=	310.00	Ltr
	Mobilization/Dem	obilizat	ion	TSHD 40	00						
	a. Main Engine	2	х	1.795	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	353.26	Ltr
	b. Dredge Pump	0	х	898	HP x	0.0033	Ltr/HP/Hours x	8	Hours =	0.00	Ltr
	c. Generator	2	х	544	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	86.17	Ltr
									=	439.43	Ltr
			The	assumpti	on of a	in average	engine power	65%	=	285.63	Ltr
							rounded		=	280.00	Ltr
3.	TSHD 2900										
	a. Main Engine	2	х	2.100	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	413.28	Ltr
	b. Dredge Pump	2	х	820	HP x	0.0033	Ltr/HP/Hours x	8	Hours =	43.30	Ltr
	c. Generator	2	х	820	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	129.89	Ltr
										586.46	Ltr
			The	assumpti	on of a	in average	engine power	50%	=	293.23	Ltr
							rounded		=	294.00	Ltr
	Mobilization/Dem	obilizat	ion	TSHD 29	00						
	a. Main Engine	2	х	2.100	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	413.28	Ltr
	b. Dredge Pump										
	c. Generator	1	х	820	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	64.94	Ltr
									=	478.22	Ltr
		The a	ssur	nption of a	an aver	age engin	e power	50%	=	239.11	Ltr
							rounded		=	230.00	Ltr

Table B-2. Results of laboratory test for the concentration of silt

Table B-2. Continued

4.	TS	SHD 2000										
	a.	Main Engine	2	х	2.100	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	413.28	Ltr
	b.	Dredge Pump	2	х	550	HP x	0.0033	Ltr/HP/Hours x	8	Hours =	29.04	Ltr
	c.	Generator	2	х	729	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	115.47	Ltr
											557.79	Ltr
			The a	รรเ	umption of a	an ave	rage engine	e power	45%	=	251.01	Ltr
								rounded		=	252.00	Ltr
	M	obilization/Dem	obilizat	ioi	1 TSHD 20	00						
	a.	Main Engine	2	х	2.100	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	413.28	Ltr
	b.	Dredge Pump										
	c.	Generator	1	х	729	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	57.74	Ltr
										=	471.02	Ltr
			The a	รรเ	umption of a	an ave	rage engine	e power	45%	=	211.96	Ltr
								rounded		=	210.00	Ltr
5.	TS	SHD 2000										
	a.	Main Engine	2	х	846	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	166.49	Ltr
	b.	Dredge Pump	1	х	400	HP x	0.0033	Ltr/HP/Hours x	8	Hours =	10.56	Ltr
	c.	Generator	2	х	300	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	47.52	Ltr
											224.57	Ltr
				T٢	ne assumpti	on of a	an average	engine power	70%	=	157.20	Ltr
								rounded		=	157.00	Ltr
	M	obilization/Dem	obilizat	ioi	n TSHD 20	00						
	a.	Main Engine	2	х	846	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	166.49	Ltr
	b.	Dredge Pump										
	c.	Generator	1	х	300	HP x	0.0033	Ltr/HP/Hours x	24	Hours =	23.76	Ltr
										=	190.25	Ltr
			The a	รรเ	umption of a	an ave	rage engine	e power	70%	=	133.18	Ltr
								rounded		=	130.00	Ltr

	Dredger Types of Clamshell												
1.	Clamshell 5.5 M ³												
	a. Main Engine	1	х	300	HP x	0.0041	Ltr/HP/Hours x	18	Hours =	22.14	Ltr		
	b. Generator	1	х	100	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	9.84	Ltr		
	c. Hydraulic	1	х	50	HP x	0.0033	Ltr/HP/Hours x	18	Hours =	2.97	Ltr		
	d. 2 Split Barge	4	х	290	HP x	0.0041	Ltr/HP/Hours x	9	Hours =	42.80	Ltr		
	e. 1 Tug Boat	1	х	290	HP x	0.0041	Ltr/HP/Hours x	9	Hours =	10.70	Ltr		
										88.46	Ltr		
		The assumption of an average engine power						75%	=	66.34	Ltr		
							rounded		=	67.00	Ltr		
	Mobilization/Demo	oilizat	ior	Clamshe	ll 5.5	M ³							
	b. Generator	1	х	100	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	9.84	Ltr		
	e. 1 Tug Boat	1	х	290	HP x	0.0041	Ltr/HP/Hours x	9	Hours =	10.70	Ltr		
									=	20.54	Ltr		
			Th	e assumptio	on of a	an average	engine power	75%	=	15.41	Ltr		
							rounded		=	10.00	Ltr		

Table B-2. Continued

2.	Clamshell 20 M ³										
	a. Main Engine	1	х	1.139	HP x	0.0036	Ltr/HP/Hours x	18	Hours =	73.81	Ltr
	b. Generator	1	х	100	HP x	0.0036	Ltr/HP/Hours x	24	Hours =	8.64	Ltr
	c. Hydraulic	1	х	50	HP x	0.0033	Ltr/HP/Hours x	18	Hours =	2.97	Ltr
	d. 2 Split Barge	4	х	290	HP x	0.0036	Ltr/HP/Hours x	9	Hours =	37.58	Ltr
	e. 1 Tug Boat	1	х	290	HP x	0.0036	Ltr/HP/Hours x	18	Hours =	18.79	Ltr
									=	141.79	Ltr
			Th	e assumpti	on of a	an average	engine power	75%	=	106.34	Ltr
							rounded		=	106.00	Ltr
	Mobilization/Demot	oilizati	ior	n Clamshe	ell 20 I	M ³					
	b. Generator	1	х	100	HP x	0.0041	Ltr/HP/Hours x	24	Hours =	9.84	Ltr
	e. 1 Tug Boat	1	х	290	HP x	0.0041	Ltr/HP/Hours x	9	Hours =	10.70	Ltr
									=	20.54	Ltr
			Th	e assumpti	on of a	an average	engine power	75%	=	15.41	Ltr
							rounded		=	10.00	Ltr

Table B-3. Analysis unit price of dredging by TSHD

	TSHD 4000													
No.	TYPES OF COST		с	AMOUNT										
1	2								4					
I	Production per day								3.480	m3				
п	Cost per day													
1	Fuel operation		16.280	Ltr	х	IDR	9.664	IDR	157.337.533					
2	Lubricants operations		316	Ltr	х	IDR	50.000	IDR	15.822.300					
3	Rental of vessel	Rp.	18.233.539.527		/		216	IDR	84.414.535					
	Amount of costs							IDR	257.574.367					
III 1	Unit Price Per cubic meters	Rp.	257.574.367		/		3.480 m3	IDR	74.011					
2	Unit Price Dredging Project Rounded			1.20	x	IDR	74.011	IDR IDR	88.813 88.810					

An estimation of the fuel requirements (Table B-1) and lubricants (Table B-2) has been accounted based on the rules of The Ministry of Transportation, including for each type of dredger with a capacity variation of productivity, to simplify the calculations used. The amount of fuel and lubricants will be used in the calculation of unit price dredging as seen respectively in Table B-3 and Table B-4, where the unit price of the dredging project by TSHD amounting to IDR 88,810 per cubic meter and for clamshell amounting to IDR 48,501 per cubic meter.

Table B-4.	Analysis	unit price of	f dredging by	Clamshell
------------	----------	---------------	---------------	-----------

	CLAMSHELL 5,5													
	No.	JENIS BIAYA							JUMLAH					
	1	2							4					
	I	Production per day							1.292	m3				
	II	Cost per day		_			_							
ľ	1	Fuel operation		3.620 L	tr x	Rp.	9.664.47	IDR	34.985.373					
	2	Lubricants operations		67 L	tr x	Rp.	50.000.00	IDR	3.350.000					
	3	Rental of vessel	IDR	4.813.900.344	/		198	IDR	24.312.628					
		Amount of costs						IDR	62.648.001					
•	III 1	Unit Price Per cubic meters	IDR	62.648.001	/		1.292 m3	IDR	48.501					
	2	Unit Price Dredging Project Rounded						IDR IDR	48.501 48.501					

 Table B-5. The estimated cost of mobilization/demobilization by TSHD

No.	TYPES OF COST		CA	AN	OUNT OF		
1	2						4
1. 2. 3.	Fuel Lubricants Supporting operational costs		12.848 Ltr 280 Ltr 1.00	x x x	IDR 9.664 IDR 50.000 IDR 27.658.191	IDR IDR IDR	124.169.080 14.000.000 27.658.191
4. 5. 6.	Sailing costs Sailing speed (Knot) The distance of-per-day (N Mil)	פרו	6	X	24		165.827.271 6 144
7.			103.027.271	,	Mobilization Demobilization	IDR IDR	1.151.578 1.151.578 1.151.578

Table B-6. The estimated cost of mobilization/demobilization by Clamshell

	CLAMSHELL 5,5													
No.	TYPES OF COST									AMOUNT				
1	2									4				
1. 2. 3.	Fuel per day Lubricants per day Supporting operational costs		2768.0.00 10.0.00 1.00	Ltr Ltr	x x x	IDR IDR IDR		9.664 50.000 59.911.812	IDR IDR IDR	26.751.246 500.000 59.911.812				
4. 5. 6. 7.	Sailing costs per day Sailing speed (Knot) The distance of-per-day (N Mil) Cost of Mob/Demob per-N Mil				4.00	x		24	IDR	87.163.058 4.00 96				
	a. pull - tandem	amount rounded	1.00	/	96.00	x	Rp.	87.163.058	IDR IDR	907.949 907.949 907.948				
	b. Unaccompanied	rounded	1.00	/	2.00	x		907.948	IDR IDR	453.974 453.974				

Table B-3 accounted for TSHD fuel costs amounting to IDR 157,337,553 which is obtained by multiplying the amount of fuel needed for 16,280 litres and multiplied by the price of fuel amounting to IDR 9,664 per litres. Likewise, the cost of lubricants obtained through the multiplication of the number of lubricants amounted to 316 litres multiplied by the price per litres lubricant for IDR 50,000. The next parameter is the cost of the rental price dredgers that have been set in 2011 by the government with an estimate of IDR 18,233,539,527 and an effective number of working days of the 216 calendar days in a year. The cost for renting the TSHD dredger amounted to IDR 84,414,535 resulting to the total cost of IDR 257,574,367 and is divided by a real productivity theory which has been calculated at the beginning of 3,480 m3 per day; the result is the cost per cubic meter dredging amounted to IDR 74.011. Eventually, by the consideration of over-dredging at 1,20 (or approximately 20%), the final of unit cost of dredging per cubic is obtained by multiplying factor over dredging 1.20 and the cost of dredging which is IDR 74.011. The final cost per cubic meter of IDR 88.810. The next thing to be taken into account is the unit cost of dredging for clamshell type dredger, it is calculated in the same way as in Table B-4.

Table B-5 is a calculation for mobilization and demobilization costs where the calculation is done in the same way with the calculation of unit cost of dredging. However, there are other additional parameters such as speed sailing of each type of dredger which to TSHD estimated at 6 Knots. In addition, the parameters for a distance of dumping calculated by multiplying the speed of 6 knots sailing and then multiplied with the amount of time available in a day (24 hours), so the distance covered in each one-day dredging cycle is equal to 144 nautical miles. Mobilization and demobilization costs are eventually calculated by multiplying the cost of sailing needs, amounting to IDR 165,827,271 with the distance required to sail for one day (144), the result amounted to IDR 1,151,578. The next thing to be taken into account is the unit cost of dredging for clamshell type dredger done in the same way as in Table B-6.

References

- Adair, R. F. (2005, February 17). Estimating production and cost for clamshell mechanical dredges. Master's thesis, Texas A&M University. Retrieved from http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/1536/etd-tamu-2004C-OCEN-Adair.pdf?sequence=1
- Agerschou, H. E. (2004). *Planning and design of ports and marine terminals*. London: Thomas Telford.
- Belesimo, F. J. (n.d.). Cost estimating projects for large cutter and hopper dredges. Retrieved from <u>http://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-2000-THESIS-B43</u>

Bichou, K. (2009). Port operations, planning and logistics. London: Informa law.

Bray, R. N., Bates, A. D., & Land, J. M. (1997). *Dredging, a handbook for engineers* (2nd ed.). London: Arnold.

De Heer, R., & R. (1989). Dredging and dredging equipment. Bandung: IHE.

- Herbich, J. B. (1992). *Handbook of dredging engineering* (2nd ed.). New York: McGraw-Hill.
- Hollinberger, T. E. (2010). Cost Estimation and Production Evaluation for Hopper Dredges. Master's Thesis, Texas A & M University. Retrieved from http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/ETD-TAMU-2010-05-7896/HOLLINBERGER-THESIS.pdf
- Huston, J. (1970). Hydraulic Dredging. Cambridge, MD: Cornell.
- I. (2011 2014). *The annual report of Indonesian Port Corporation III*. Surabaya, Indonesia: Indonesian Port Corporation III.

- I. (2014). Facts About: Trailing Suction Hopper Dredgers IADC Dredging, 1-4. Retrieved from http://www.iadc-dredging.com/ul/cms/fckuploaded/documents/PDF%20Facts%20About/facts-about-trailing-suctionhopper-dredgers.pdf
- Lester, A., & Lester, A. (2007). Project management, planning and control: Managing engineering, construction and manufacturing projects to PMI, APM and BSI standards. Amsterdam: Elsevier/Butterworth-Heinemann.
- Mubarak, S. A. (2015). Construction Project Scheduling and Control: Red Vector Bundle, 3rd Edition. John Wiley & Sons.
- Narula, O. P. (1991). Dredging for Navigations; A Hand Book for Port and Waterway Authorities. New York, United State of America: United Nations.
- Pullar, A., & Hughes, S. (2009). December 2009. Project Next Generation Dredging Methodology and Disposal Alternatives. doi:10.1515/9781400865567-022
- Randall, R. E. *Professor of Ocean and Civil Engineering, Texas &AM University, College Station, TX* pp. 9. "Estimating Dredging ost .
- Randall R. E. 2004 . "Dredging". ha pter 11 " ort Engineering". Editor: G. . Tsinker, John Wiley Sons, Inc., Hoboken, NJ.
- Tsinker, G. P. (2004). Port engineering: Planning, construction, maintenance, and security. Hoboken, NJ: Wiley.
- Turner, T. M. (1996). Fundamentals of Hydraulic Dredging (2nd ed.). New York, United State of America: ASCE Press.

Wowtschuk, B. M. (2016). Production and Cost Estimating for Trailing Suction Hopper Dredge. Master's thesis, Texas A & M University. Retrieved from https://oaktrust.library.tamu.edu/handle/1969.1/156958