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ABSTRACT

Title of Dissertation: How to reduce emission of Nitrogen Oxides (NOx) from

                                marine diesel engines: in relation to the Annex VI of

                                MARPOL 73/78.

Degree:                                                  MSc

In September 1997, the Protocol of 1997 to MARPOL 73/78 was adopted to

introduce the new Annex VI - Air pollution from ships. When the Protocol enters

into force, the requirements of the NOx will be applied to each diesel engine with a

power output of more than 130 kW which is installed on a ship, or which undergoes

major conversion, on or after 1 January 2000. Annex VI deals with a wide range of

air pollution control matters including regulations on halons, Hydro-

chlorofluorocarbons (HCFCs) and other ozone depleting substances, Nitrogen oxides

(NOx), Sulphur oxides (SOx), Volatile organic compounds (VOCs), shipboard

incinerators and fuel oil quality.  However, the main focus has so far been on

reducing the NOx.

The NOx Technical Code introduces a new concept of engine family, engine group,

parent engine and the technical file to be determined before issuing the Engine

International Air Pollution Prevention Certificate (EIAPP Certificate) and the

International Air pollution Certificate (IAPP Certificate). Because the new Annex VI

has not yet come into force, guidelines have been introduced to issue a Statement of

Compliance (SOC Certificate).

NOx formation builds up by reaction between nitrogen and oxygen in the combustion

air (thermal NOx), by reaction between exhaust gas hydrocarbon and combustion air

oxygen (prompt NOx) and by reaction between nitrogen bindings in fuel (fuel NOx).
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Thermal NOx is decisive for total emission and all the reducing methods are targeted

to reduce that component.  NOx emission can be reduced by primary methods such as

retard injection, fuel nozzle modification, change of compression ratio, water direct

injection, water emulsification, exhaust gas recirculation (EGR) and secondary

method such as selective catalytic reduction (SCR).

Key words: Air Pollution, Nitrogen Oxides (NOx), Emission, Diesel engine.

Certification,
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Chapter 1

INTRODUCTION

1.1 Background of the study

Environmental issues have been more topical than ever. Recently, the emission

control legislation, focused on reducing air pollution from the shipping industry is

now contemplated by many regulatory agencies and authorities around world. The

shipping industry has been excepted from legislation. Also the relatively moderate

amounts of air pollution generated by ship, on a global scale, compared to many

other sources of air pollution has been considered.

As for marine diesel engines, they have been developed under two major

technologies of thermal efficiency and reliability for the past 20 years.  At the present

time, with the various legislation of air pollution, the marine diesel engine is facing

another major theme, the environment problem, and most of the technological efforts

concentrate on this matter.

In September 1997, the Protocol of 1997 to MARPOL 73/78 was adopted to

introduce new Annex VI.  This Annex requires that survey of engines and equipment

shall be conducted in accordance the NOx Technical Code. When the Protocol of

1997 enters into force, the requirements of the NOx emission restriction apply to

each diesel engine with a power output of more than 130 kW which is installed on a
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ship on or after 1 January 2000, or which undergoes major conversion on or after 1

January 2000 except for lifeboat engine and emergency generator.

Annex VI of MARPOL 73/78 deals with a wide range of air pollution control matters

including ozone depleting substances, acid deposition materials, volatile organic

compounds, incineration and fuel oil quality.  However, the main focus has so far

been on reducing the NOx emissions because NOx regulation will be retrospectively

applied to each engine installed on board a ship, or which undergoes major

conversion on or after 1 January 2000, upon the date of entry into force.

1.2 Scope, objectives methodology of the study

The aim of this diddertation is to provide information on NOx problems to those who

are concerned, such as ship owners and operators as well as surveyors, designers and

manufacturers of marine diesel engines and equipment.  There will naturally be some

questions.  Why is the air pollution from a ship so important?  What is the content of

the new Annex VI and NOx Code?  When will this regulation enter into force?; What

is NOx and How is NOx formed?; Then, how to reduce NOx emission?  In this study

those questions will be examined systemically from chapter 2 through chapter 5.

The objectives of this dissertation are:

1. To introduce the background of the legislation of the International Convention

for the Prevention of Air Pollution from Ships and the major contents of the

Convention.

2. To provide rationale behind the Technical Code on Control of Emission of

Nitrogen Oxides from Marine Diesel Engines (NOx Code) by summarizing and

analyzing it.

3. To research and review various possible NOx reduction methods for marine

diesel engines.
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4. To make proper proposals and recommendations to meet IMO goals concerning

the prevention of air pollution from ships efficiently.

In chapter 2, the background of Annex VI is introduced which includes the process of

adoption of 1997 Protocol to MARPOL 73/78.  The content of Annex VI is reviewed

carefully in relation to the NOx Technical Code such as the entry into force versus

application date.  The purpose of this chapter is to identify those regulations in the

new Annex which require to be addressed immediately as well as those which should

be considered in the medium to long term.

In chapter 3, the NOx Technical Code is summarized and also some new concepts in

the NOx Technical Code such as engine family, engine group, parent engine and the

technical file are introduced.  Furthermore, the procedure of survey and certification

for the Engine International Air Pollution Prevention Certification (EIAPP

Certificate) and the International Air pollution Certificate (IAPP Certificate) is

examined in relation to the Statement of Compliance Certificate (SOC Certificate).

However, chapters 2 and 3 do not cover all the contents of Annex VI and the NOx

Technical Code in detail.  Therefore, those would be regarded as a sort of reference

book and should be read in conjunction with the IMO publication “Annex VI of

MARPOL 73/78, Regulations for the Prevention of Air Pollution from Ships and

NOx Technical Code.”

In chapter 4, the evaluation and contribution of air pollution from the marine diesel

engine is introduced.  This includes the different kinds of pollutants such as carbon

monoxide (CO), sulphur oxides (SOx), nitrogen oxides (NOx), hydrocarbons and

particulate material from marine diesel engines. In the last part of this chapter, the

formation of NOx i.e. thermal NOx, prompt NOx and fuel NOx are studied in light

of Zeldovich’s mechanism for thermal NOx formation.
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In chapter 5, the development of engineering technology and various methods for

controlling NOx formation are discussed.  Practical methods for marine NOx

reduction can be divided into post-combustion (secondary method) such as Selective

Catalytic Reduction (SCR) and combustion methods (primary method) of which

more than several options exist.  Some of them are: retard ignition, fuel modification,

Exhaust Gas Recirculation (EGR), fuel emulsification and water direct injection.

The concentration is put on the discussion of advantages and disadvantages regarding

the cost, maintenance, efficiency and practical application of different options.

This study reviews and analyzes the current design concept of the marine diesel

engine concerning NOx reduction as well as the new Annex VI and the NOx

Technical Code. Research papers submitted by various national and international

institutions to the MEPC committee of IMO are widely used and cited in this study.

Many other valuable books and periodical articles were searched through the WMU

library system and Internet.  Interviews with knowledgeable people such as

professors, experts on engine manufacturers and colleagues were made.
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Chapter 2

REVIEW OF ANNEX VI OF MARPOL

2.1 Background of MARPOL 73/78 Annex VI

2.1.1 Background

Environmental issues have been more topical than ever and concern for our global

environment is extending through all sections of society in the world.  In the past the

development of international regulations for marine pollution prevention was

concentrated on the pollution of the sea water and the coastal regions.  Recently, the

emission control legislation, focused on reducing air pollution from the shipping

industry  is now contemplated by many regulatory agencies and authorities around

world.

The shipping industry has so far been exempted from legislation, partly because there

has been no practical way of emission control technology at hand which is suitable

for a ship borne installation.   Also, the relatively moderate amounts of air pollution

generated by ships, on a global scale, compared to many other sources of air pollution

has been considered.

While conservation of the global environment has been a major outstanding issue for

quite a time, interests concerning the environmental effect of emission from ships has

greatly increased.  Likewise, the International Maritime Organization (IMO) has
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recognized the importance of prevention of air pollution from ships.  The emission

regulations proposed by IMO were the first global maritime exhaust emission

regulations. After long disscussions these regulations were adopted at the conference

of Parties to MARPOL 73/78 in September 1997 as Annex VI of MARPOL 73/78 –

Regulations for the Prevention of Air Pollution from Ships.

Annex VI of MARPOL 73/78 deals with a wide range of air pollution control matters

including regulations on halons, Hydrochlorofluorocarbons (HCFCs) and other ozone

depleting substances such as Nitrogen oxides (NOx), Sulphur oxides (SOx), volatile

organic compounds (VOCs), shipboard incinerators and fuel oil quality.  However,

Annex VI does not cover a number of issues such as carbon dioxide (CO2),

hydrocarbons (HC) and particulate matter (PM).  Recently, at the 44th session of

MEPC on December 1999, the USA submitted a document calling for limits for

hydrocarbons (HC) and particulate matter (PM).  As for CO2, the conference adopted

a Resolution, which invites organizations to undertake a study of CO2 emissions for

the purpose of establishing the amount and relative percentage of CO2 emissions

from ships, as part of the global inventory of CO2 emission.  Indeed, like the other

existing Annexes to MARPOL, the development of air pollution Annex will have to

continue after its implementation process.

Annex VI differs from the other Annexes to MARPOL in some ways.  The effects of

air pollution may be felt hundreds of miles away from its source and the evidence of

pollution is not so clear.  It also introduces a new term ‘emission’ instead of using

‘pollution’ as in the other Annexes.  Moreover, Annex VI follows the explicit

amendment process while all other Annexes are tacit amendment process.

2.1.2 Progress
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Annex VI had been under development at the IMO for a period of nine years before

finally being adopted in the Protocol of 1997 to amend the Convention.  However,

the subject of ship generated air pollution has been a topic of discussion for much

longer.

At IMO, in the mid 19980s the Marine Environment Protection Committee (MEPC)

was reviewing the quality of fuel oils in relation to discharge requirements in Annex I

and the issue of air pollution was discussed.  In September 1988, at the twenty-sixth

session of the MEPC, the committee agreed to include the issue of air pollution in its

work program, following a proposal from Norway.  In addition, the Second

International Conference on the Protection of the North Sea, held in November 1987,

had issued a declaration in which the ministers of North sea states agreed to initiate

actions within appropriate bodies, such as IMO, “leading to improved quality

standards of heavy fuels and to actively support this work aimed at reducing marine

and atmospheric pollution.” (Pardo, 2000)

In March 1989, at the twenty-seventh session of the MEPC, the committee agreed to

take the prevention of air pollution from ships as part of the committee’s long term

work program.

In November 1990, at the thirtieth session of the MEPC, a draft of Annex VI to

MARPOL 73/78 was prepared, which included target limits of HCFCs, Halon, NOx,

SOx and VOCs. This led to the adoption of an IMO Resolution A.719(17)  in

November 1991.

In September 1991, at the twenty-first session of the Sub-Committee on Bulk

Chemicals, the basic clauses to be included in the new annex were developed, which

later was used as a working model for the new annex.
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In October/November, the IMO assembly at the seventeenth session, adopted

resolution A.719(17) on the prevention of air pollution from ships.  This resolution

was adopted unanimously and regarded as a major step forward for the prevention of

air pollution from ships.

In November 1992, at the twenty-second session of the Sub-Committee on Bulk

Chemicals, a draft Annex VI to MARPOL 73/78 was prepared. The new draft Annex

VI had been developed over the six years at the Sub-Committee on Bulk Chemicals

and its Working Group on Air Pollution.

In September 1997, in accordance with the decision of the IMO Assembly, the

International Conference of Parties to MARPOL 73/78 finally adopted the Protocol

of 1997 to amend the Convention, which sets out the new Annex VI, Regulations of

the Prevention of Air Pollution from the ships. This enabled specific entry force

conditions to be set out in the protocol and included also the Technical Code on

Control of Emission of Nitrogen Oxides from Marine Diesel Engines (NOx

Technical Code).

2.2 Review of MARPOL 73/78 Annex VI

2.2.1 Entry into force

The Protocol shall enter into force twelve months after the date on which not less

than fifteen states, the combined merchant fleets of which constitute not less than 50

percent of the gross tonnage of the world’s merchant shipping.

In the same way, paragraph 2 of Resolution 2 states that the provisions of the NOx

Technical Code shall enter into force, as mandatory requirements, for all Parties to

the 1997 Protocol on the same date as the entry into force of that Protocol.
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In comparison, Regulation 13 (Nitrogen oxides (NOx)) states that the regulation shall

apply to each diesel engine which will be installed on a ship constructed on or after 1

January 2000. However, the new Annex VI has not come into force yet. Therefore, in

terms of legal point of view, it is clear that the requirements of this regulation could

not be enforced before the entry into force of the Protocol 1997 to MARPOL 73/78.

 As can be seen in table 2.1, the compliance of each diesel engine which is installed

on a ship constructed on or after 1 January 2000, but before the date of entry into

force, is not unenforceable until the time when Annex VI enters into force.

Furthermore, the issuance of EIAPP Certificate and the initial survey to such engines

may be delayed by up to 3 years. Whilst exiting engines, those not subject to major

conversion, will not be subject to any such inspections.

There are some doubts about the date of entry into force.  The protocol is still some

way from reaching the required level of ratification to enter into force.  So far only

two nations, Sweden and Norway, have ratified the 1997 protocol of MARPOL

73/78.  Concerning this problem, IMO issued the MEPC Circ. 344. “Interim

guidelines for the application of the NOx Technical Code.”  This circular states:

“While the requirements of this regulation could not be enforced before the

entry into force of the Protocol, it should be clearly understood that engine installed

on ships constructed on or after 1 January 2000, or engines which undergo a major

conversion on or after 1 January 2000 will have to meet these requirements once the

Protocol enters into force.”

“Each engine which will become, retrospectively, subject to the provisions of

regulation 13 of Annex VI of MARPOL 73/78 upon its entry into force, should be

certified in accordance with the requirements of the NOx Technical Code.”



10

                                                                   Entry into

                                        1.1.2000              force date           + 3years

Existing

ship

prior entry

into force

SOC  with Annex VI

             (not mandatory)

IAPP Cert.

requiredReg.5&6

Survey

& Cert.

New ship

post entry

into force

IAPP Cert. required prior to

ship’s entry into service

Existing

engine prior

1.1.2000

(Engines subject to Major

 conversion need SOC with

NOx

 code)

(Affected engines

need EIAPP Cert.

& Initial survey)

New engine

post

1.1.2000

Engines need SOC with NOx

code

EIAPP Cert. &

Initial survey

required

Reg.13

NOx

New engine

post entry

into force

EIAPP Cert. & Initial survey

 required prior to

ship’s entry into service

Table 2.1 Survey, Certificate and entry into force date

Furthermore, if the conditions for entry into force of the Protocol have not been met

by 31 December 2002, the conference adopted resolution 1 in order to avoid

unacceptably long delays in the entry into force. It has been agreed that the Marine

Environment Protection Committee (MEPC) will identify the impediments to entry
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into force of the Protocol and initiate any necessary measures to alleviate those

impediments, as a matter of urgency, at it’s first meeting thereafter.

2.2.2 Survey, Inspection and Certification (Reg. 5&6&13)

After the date of Annex VI entry into force, every ship of 400 gross tonnage or above

engaged in voyages to ports under the jurisdiction of other Parties, shall be subject to

initial survey, intermediate survey and periodical survey to ensure a ship’s

compliance with this Annex.

Ships constructed before the date of entry into force shall comply with Annex VI not

later than the first scheduled drydocking, but in no cases later than three years after

the date of enter into force.

Paragraph (4) of regulation 5 provides mandatory guidelines of the Technical Code

on Control of Emission of Nitrogen Oxides from Marine Diesel Engines (NOx

Technical Code), stating how the survey of engines and equipment for compliance

with regulation 13 (Nitrogen oxides) shall be conducted.

After a successful survey in accordance with the regulations of this Annex, the

International Air Pollution Prevention Certificate (IAPP Certificate) shall be issued

for a period not exceeding five years from the date of issue.

According to the NOx Technical Code, all engines within Reg.13 requirements need

an Engine International Air Pollution Prevention Certification (EIAPP Certificate).

This certificate will be one of the key requirements in the issuing of the International

Air pollution Certificate (IAPP Certificate) for a ship.
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However, the new Annex VI has not come into force for the time being, so guidelines

have been introduced to solve this problem by issuing a sort of interim certificate.

The authorized organization (e.g. Classification Societies), by the flag state, can issue

a Statement of Compliance (SOC Certificate).  The SOC Certificate will be

transformed into the EIAPP Certificate when the new Annex VI enters into force.

After entry into force of Annex VI and upon satisfactory compliance with the code

requirements, ‘Statement of Compliance’ with the NOx Technical Code should be

issued by the flag state administration or an organization acting on behalf of the

administration.  The Statement of Compliance is intended as an interim measure

pending issuance of the Engine International Air Pollution Prevention Certification

(EIAPP Certificate) and/or the International Air pollution Certificate (IAPP

Certificate) upon entry into force of Annex VI. (MEPC/cir.344, 1998)

2.2.3 Nitrogen oxides (Reg. 13)

2.2.3.1 NOx emission limit

The emissions of NOx (calculated as the total weighted emission of NO2) from each

diesel engines with a power output of more than 130 kW, which installed on a ship

constructed after 1 January 2000 or which undergoes major conversion on or after 1

January 2000, will have to be under the following limits:

• 17.0 g/kWh (grams/kilo watt hour),  when n is less than 130 rpm

• 45.0 n (-0.2) g/kWh, when n is 130 or more but less than 2000 rpm

• 9.8 g/kWh, when n is 2000 rpm or more

where n = rated engine speed (crank shaft revolutions per minutes).

For those engines within the scope of the Annex VI a major conversion is defined as

where the engine is replaced by a new engine built on or after 1 January 2000, where
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the maximum continuous rating of an engine is increased by more than 10% or where

it is subject to a substantial modification. The definition of ‘substantial modification’

depends on when the ship was built.  For those built on or after 1 January 2000

substantial modifications are those which could potentially cause the engine to

exceed the NOx limits as set out in the regulation.

Fig.2.1 NOx emission limits compared with actual emission levels at 1992.

Source:  MER, 1996, 22.

This regulation does not apply to emergency diesel engines, engines installed in

lifeboats and any device or equipment intended to be used solely in case of

emergency, and engines installed on ships solely engaged in voyages within waters

subject to the sovereignty or jurisdiction of the state the flag of which the ship is

entitled to fly, provided such engines are subject to an alternative NOx control
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measure established by the Administration.  Moreover, this regulation does not

address NOx emissions from ship’s boilers, gas turbines and incinerators.

The maximum allowable NOx emission (Fig.2.1) vary with the rated speed of the

engine. Low speed engines are allowed a higher limit than medium and higher speed

engines.  The limit figures represent a 30% reduction of the usual NOx emission

values of year 1992designs.  More stringent emission limits are taken into account by

IMO.  The MEPC, as a matter of urgency, will review the emission limits at a

maximum of five year intervals after entry into force.

IMO sees the 30% target only as the first step.  For a smooth and technically

practicable implementation, the NOx reduction for new engines shall be reviewed

and modified as necessary. But any new limitation in the course of the step by step

approach will not be applied retrospectively, except in connection with a major

conversion of an engine.

2.2.3.2 Further NOx emission limits

More stringent controls are already faced in environmentally sensitive trading regions

such as the Baltic Sea.  The Swedish government’s initiatives offering reduced port

charges for low NOx tonnage and Norway’s proposed ecology taxes and fees for

shipping are likely to be mirrored by Denmark, Finland and Germany.  EU-wide

measures are also planned. (MER, 1999)

According to Fleischer (1996), in the USA the Environmental Protection Agency

(EPA) proposed , in 1994, a federal rule for marine engines operating within the USA

and in US territorial waters.  The EPA has also proposed an emission fee for voyages

to the ports of Los Angeles/Long Beach.  The proposed regulation is based on an

established USA-EPA practice for on high way and off-highway engine applications.
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Average limit values for NOx (limit: 9.2g/kWh), HC, CO and PM are proposed for

all engines above 37 kW.

2.2.3.3 Present status of NOx reduction

After the time Regulation 13 concerning NOx emission limits was chosen, the engine

manufacturers have continued their research about emission control technologies for

marine diesel engines, especially looking at the influence of minor changes in engine

design such as adjustments to the compression ratio and injection timing.  Already

engine manufacturers have been gearing up for such moves, and have reached

remarkable results.

According to a recent document submitted to MEPC by Japan and the United states

in December 1999, the two countries insist on IMO to take action as appropriate for

the purpose of early entry into force of the 1997 Protocol and to begin a dialogue to

establish a second tier of emission limits for marine diesel engines, respectively.

Japan carried out research on whether domestic engines comply with the NOx

regulations or not, insisting that the share of Japanese made 2-stroke main engines in

the world is about 50%, and the share of Japanese made 4-stroke main engines is

about 10%.  With regard to the Japanese engines, 100% of the2-stroke engine type

will comply with the NOx requirements and about 85% of the 4-stroke engine type

will comply with the requirements.  About 90% of the 4-stroke engine type for

generators will comply with the requirements.

Japan carried out this research on domestic engines, however it can be assumed that

the situation should be similar in other countries, considering the technology

standards in other countries and the fact that most of such engines, especially all

types 2-stroke engine, are manufactured based on the same world wide licenses.
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Similarly, the document submitted by the United States concerning test data acquired

by the US-EPA in connection with the domestic marine diesel engine control

program suggests that the use of these technologies will result in significant

reductions in NOx emissions.  Wartsila NSD has also been experimenting with

technology for large ocean-going propulsion engines.  They estimate that direct water

injection technology can achieve a 50 to 60% reduction of NOx emissions.  This

technology can be used with all fuel types and is available for retrofit operations.

Selective Catalyst Reduction (SCR) techniques can achieve 85 to 95% reduction of

the NOx emissions. (MEPC 44, 2000)

2.2.4 Sulphur oxides (SOx)

Regulation 14 on control of SOx emission will apply to every type of combustion

equipment regardless of its use including auxiliary and main propulsion, emergency

diesel engines and engines installed in lifeboats.  Unlike the NOx regulation, there is

no mention about capacity limit of power output or any exception.

The sulphur content of fuel oil used on board shall not exceed 4.5% m/m except

within a SOx emission control area.  It is a relatively high limit compared with 1.5%

m/m within SOx emission control areas.  Likewise, the international standards

organization presently sets at 5.0% for the majority of residual fuel oils.

However, ships which are trading within a SOx emission control area will have to

meet the more stringent emission requirement of not exceeding 1.5% m/m, or an

exhaust cleaning system such as SOx scrubber which can be used to reduce the SOx

emission to a maximum of 6.0 g/kWh.  Within SOx emission control areas, using

separate fuel systems may be a best option concerning operational and procedural
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aspects by fully flushing all fuels exceeding 1.5% m/m before entering into such

areas.

The SOx emission control areas will be strictly controlled by Annex VI with criteria

and procedures for their designation.  At the time of adoption of the new Annex only

the Baltic Sea was designated as a SOx emission control area.  However, the North

Sea states are presently preparing for designation of the North Sea.

The sulphur content of fuel oil intended for use on board, both within a SOx

emission control area or not, shall be documented by the supplier by means of the

bunker delivery note, which must be kept on board for a period of three years after

the fuel oil has been delivered on board.

There is a 12 month allowance to meet the limit of SOx emission control areas after

entry into force of the 1997 Protocol and, similarly, in the case of  designation of new

SOx emission control areas.  It gives ships relatively sufficient time to comply with

this regulation if structural alterations are required, such as separate oil tanks and fuel

oil systems.

2.2.5 Fuel oil quality

Regulation 18 - Fuel oil quality is directly related to SOx emission limits and is an

operative regulation.  When fuel oil is delivered on board a bunker delivery note shall

be issued by the bunker suppliers and be retained on board for a period of three years

after the fuel oil has been delivered on board.

This regulation also requires that, for each bunker delivery, a representative sample

of the fuel delivered shall be sealed and retained under the ship’s control until the
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fuel is substantially consumed but in any case for a period of not less than 12 months

from the time of delivery.

2.2.6 Incinerators

Regulation 16 requires that all incinerators installed on board a ship on or after 1

January 2000 shall be approved by Administrations in accordance with requirements

contained in IMO resolution MEPC 76(40) on Standards specification for shipboard

incinerators. However, exiting incinerators installed on board ships prior to 1 January

2000 may still be used after entry into force of the Annex VI, although the

incineration of polyvinyl chlorides (PVCs) in them will be prohibited

As with the NOx regulation, Regulation 16 will be retrospectively applied on the date

of entry into force of Annex VI, so until that time this regulation is unenforceable.

As a result, although an incinerator may have been type approved in accordance with

MEPC 76(40) at the time of its manufacture, some other requirements such as

operating manual and operator training may not be required until the initial survey for

issuance of the IAPP Certificate is carried out.

2.2.7 Ozone-depleting substances

Regulation 12 will prohibit the deliberate emissions of ozone-depleting substances

such as Halons and chlorofluorocarbons (CFCs). Deliberate emissions include

emissions occurring in the course of maintaining, servicing, repairing and disposing

of systems of equipment, except that deliberate emissions do not include minimal

releases associated with the recapture or recycling of an ozone depleting substance.

New installations which contain ozone-depleting substances shall be prohibited on all

ships.  However, new installations containing hydrochlorofluorocarbons (HCFCs) are
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permitted until 1 January 2020.  This regulation also requires that all of the

substances covered by the regulation, and equipment containing such substances,

should be delivered to appropriate reception facilities upon removal from ship.  The

provision for reception facilities is covered by Regulation 17.

The use of Halons in new fixed fire fighting installations has already been banned

under SOLAS as of 1 October 1994 (SOLAS Reg.II-2/5.3.1), and IMO is considering

similar action for portable halon extinguisher.  The use of chlorofluorocarbons

(CFCs), mainly used in air conditioning and refrigeration units, will be prohibited in

all new installations after entry into force of Annex VI.
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Chapter 3

SUMMARY OF NOx TECHNICAL CODE

3.1 General

The NOx Technical Code is a compulsory guideline specifying the requirements for

the testing, survey and certification of marine diesel engines so as to ensure their

compliance with the NOx emission limits of Reg. 13 of Annex VI to MARPOL

73/78.  The regulation will come into force twelve months after the date on which not

less than 15 States, the combined merchant fleets of which constitute not less than 50

percent of the gross tonnage of the world’s merchant shipping.  If the regulation

comes into force all diesel engines with a power output of more than 130 kW, which

are installed on a ship constructed after 1 January 2000, will have to fulfill these

requirements.

Therefore, all engines within the above mentioned regulation need an Engine

International Air Pollution Prevention Certification (EIAPP Certificate). This

certificate will be one of the most important requirements in the event of issuing the

International Air pollution Certificate (IAPP Certificate) for the ship. However, the

new Annex VI has not yet come into force for the time being. So, guidelines have

been introduced to solve this problem by issuing a sort of interim certificate. The

authorized organization (e.g. Classification Societies) by the flag state, can issue a

Statement of Compliance (SOC Certificate) and will approve the NOx technical file

after confirming a proper certificate procedure at the engine manufacture’s site
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(MEPC/cir.344). The SOC Certificate will be transformed into the EIAPP Certificate

when the new Annex VI comes into force.

The emissions of NOx (calculated as the total weighted emission of NO2) from diesel

engines with a power output of more than 130 kW, which are installed on ships

constructed after 1 January 2000 or which undergoes major conversion on or after 1

January 2000, will have to be under the following limits:

• 17.0 g/kWh (grams/kilo watt hour),  when n is less than 130 rpm

• 45.0 n (-0.2) g/kWh, when n is 130 or more but less than 2000 rpm

• 9.8 g/kWh, when n is 2000 rpm or more

where n = rated engine speed (crank shaft revolutions per minutes).

3.2 Survey and Certification

3.2.1 Types of survey and certification

For the purpose of clear understanding the complicated NOx Technical Code, first of

all the following definitional terms have to be born in mind.  Each marine diesel

engine shall be subject to the following surveys:

• Pre–certificate survey: done to ensure that the engine, as designed and equipped,

complies with the NOx limits at a test bed prior to installation on board.  After

confirming compliance, the EIAPP Certificate or SOC Certificate will be issued.

• Initial certification survey: done to ensure that the engine, including any

modifications or adjustments since the pre-certification, complies with the NOx

limits after the engine is installed on board the ship. This survey, as part of the

ship’s initial survey, may lead to the issuance of a ship’s initial IAPP Certificate.

• Periodical and Intermediate survey: done to ensure that the engine continues to

fully comply with the NOx limits as part of a ship’s surveys required in regulation

5 of Annex VI.
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To comply with the above mentioned surveys and certification requirements, there

are five alternative methods which the engine manufacturer, ship builder or

shipowner can choose for testing, measuring and calculating the NOx emission from

a diesel engine.  The five methods are:

1. test-bed testing for the pre-certification survey.

2. on-board testing (only for engines not pre-certified) for combined pre-

certification and initial certification survey in accordance with the full test-bed

requirements.

3. on-board engine parameter check method for confirmation of compliance at

the initial, periodical and intermediate surveys for pre-certified engine or engines

that have undergone modification or adjustments.

4. on-board simplified measurement method for confirmation of compliance at

the periodical and intermediate surveys of confirmation of pre-certified engines

for initial certification surveys.

5. on-board direct measurement and monitoring for confirmation of compliance

at periodical and intermediate surveys only.

3.2.2 Pre-certification of an engine

Prior to installation on board a ship every marine diesel engine shall be adjusted to

meet the applicable NOx emission limit and shall be pre-certified by the

Administration by issue an EIAPP Certification after the NOx emission measurement

on a test-bed.

If an engine cannot be pre-certified on a test-bed due to its size, construction and

delivery schedule, the engine may be tested at an on-board test.  In such a case, the

on-board test has to fully meet all the requirements of a test-bed procedure. Such a
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survey may be accepted for one engine or for an engine group represented by the

parent engine only, but it shall not be accepted as an engine family certification.

Fig.3.1 Pre-certification survey at the manufacture’s shop. Source : NOx

Technical Code, pp.101.

For serially manufactured engines the engine family or the engine group concept may

be applied.  In such a case, test is required only for the parent engine, which is the

representative of an engine family or engine group.  If the NOx emission values meet

the requirements, the NOx relevant engine parameters have to be documented in the

technical file.  This technical file of the parent engine has to be the same for all
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member engines. Within an engine family or engine group the EIAPP Certificates

will be issued to the parent engine and to every member engine.

If the pre-certification test results fail to meet the NOx emission limits, a NOx-

reducing device may be installed additionally. This device must be recognized as an

essential component for the engine and will be recorded in the engine’s technical file.

A typical pre-certification procedure is shown in Fig.3.1

3.2.3. Engine group/family concept and parent engine

To avoid certification testing of every engine for serially manufactured engines the

engine family or the engine group concept may be applied.  In such a case, the testing

is required only for the parent engine of an engine family or engine group.

Engine groups or engine families are represented by their parent engines.  The

certification test is only necessary for these parent engines.  Member engines can be

certified by checking documents, components, settings etc which have to show

correspondence with the parent engine’s parameters.

3.2.3.1 The engine family concept

This concept is applied to any mass-produced engines which, through their design,

have similar NOx emission characteristics and require no adjustments or

modification during installation on board.

Where adjustable features are provided, e.g. for balancing cylinder peak pressures

and individual cylinder exhaust gas temperatures, they are to be such that no setting

can adversely affect the engine’s NOx emission.
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The following basic characteristics must be common for all engines within an engine

family:

.1  combustion cycle: 2-stroke / 4-stroke

.2  cooling medium: air/ water / oil

.3  individual cylinder displacement: to be within a total spread of 15%

.4  number of cylinders and cylinder configuration

.5  method of air aspiration: naturally aspirated / pressure charged

.6  fuel type: distillate or heavy fuel oil / dual fuel

.7  combustion chamber: open / divided

.8  valve and porting , configuration, size and number: cyl. head / cyl. wall

.9  fuel system type

3.2.3.2 The engine group concept

A engine group is characterized by engines with the same bore and turbo-charging

system of one manufacturer. This concept is applied to smaller series of engine

produced for similar engine application and which require minor adjustments and

modifications during installation.  These engines are normally large power engines

for main propulsion.

With regard to the allowable adjustments and modifications within an engine group

the manufacturer is to provide documentary evidence or historical data to prove that

the range of adjustments will permit the engine to operate within the emission limits.

Within an engine group, in addition to the parameters fined above for an engine

family, the following parameters and specification must be common to each member

engine.

.1  bore stroke dimensions

.2  method and design features of pressure charging and exhaust gas system
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- constant pressure

                  -     pulsating system

.3  method of  charging air cooling system

                  -     with / without charging air cooler

.4  design features of the combustion chamber

.5  design features of the fuel injection system, plunger and injection cam

.6  maximum rated power at maximum rated speed

3.2.3.3 The parent engine

The parent engine of an engine family or group must be selected, which has the worst

NOx emission characteristics of the engine family or group, as documented by the

manufacturer and approved by the Administration.  This engine will have the highest

NOx emission level among all of the engine family or group.

The parent engine for an engine family has to incorporate those features, which will

most adversely affect the NOx emission level.  During testing of the parent engine of

an engine group, the NOx influence of adjustments and modifications has to be

demonstrated.

After testing, a technical file should be prepared identifying the components, settings,

operation values and ranges of those items which can affect the NOx emissions.  This

is to give the engine’s rated performance, any designation and restrictions.  The

specification of spare parts is also included.  In the case of engine group members the

on-board verification procedures must also be given.

The following criteria for selecting the parent engine shall be considered, but the

selection process must also take into account the combination of basic characteristics

in the engine specification:
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.1  main selection criteria

- higher  fuel delivery rate

.2  supplementary selection criteria

- higher mean effective pressure

- higher maximum cylinder peak pressure

- higher charge air  / ignition pressure ratio

- higher charge air pressure

- higher charge air temperature

In order to support the proposed parent engine selection, adjustment and fit, it may be

necessary for the engine manufacturer to have undertaken a number of emission trials

to determine the actual effects of the various factors which influence NOx formation

during the combustion process.

3.3 Issue of initial IAPP Certificate

When the Annex VI enters into force all ships will need an IAPP Certificate.  For the

issue of IAPP Certificate every diesel engine shall have on-board verification surveys

after installation of a pre-certificated engine on board a ship.  During the initial

survey, if all of the engines installed on board are verified to remain within the

parameters and components and adjustable features recorded in the technical file, the

IAPP Certificate will be issued to the ship.

During the initial survey, for the engine family members it will be sufficient to

confirm that any maintenance or replacement of NOx sensitive components is in

compliance with the technical file specification.  For engine group members the

engine parameter check method or the simplified measurement method may be used.
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If any adjustment or modifications are made which are outside the approved limits

documented in the technical file, the IAPP Certificate may be issued only if the

overall NOx emission performance is verified to be within the required limits by the

engine parameter check method or the simplified measurement method.  The flow

chart is shown in Fig. 3. 2

Fig. 3.2 Initial survey on board a ship Source: NOx Technical Code, pp.102.

3.3.1 Engine parameter check method
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The engine parameter check method is for confirmation of compliance at initial,

periodical and intermediate surveys for pre-certified engines or engines that have

undergone modification or adjustments.  Therefore it is necessary to conform that

each engine’s components, settings and operating values have not deviated from the

specifications, which are documented in that engine’s technical file.

 In practice this method will be the most preferred option for the engine

manufacturers and ship owners.  This method is likely to consist of a documentation

inspection of the engine parameters and an actual inspection of engine components

and adjustable features with visual inspection. (American Bureau of Shipping (ABS),

1999)

For engines equipped with after-treatment devices, it will be necessary to check the

operation of the after-treatment devices as part of the parameter check.  With this

method especially for the periodical and intermediate survey, ship owners shall

maintain the record book of engine parameters, the list of engine parameters and the

technical documentation of engine component modifications.

3.3.2 Simplified measurement method

The simplified measurement method shall be applied for confirmation of compliance

at periodical and intermediate survey of confirmation of pre-certified engines for

initial certification surveys.  This method is a simplified version of the full test bed

method and there are certain allowances which may be applied in calculating the final

emission figures to take account of possible deviations in instrument accuracy and

the presence of nitrogen in the fuel.
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All results of measurements, test data and calculations shall be recorded in the

engine’s test report.  Due to the difficulty in carrying out such measurements, this

method is likely to be used only for special cases. (ABS,1999)

3.4 Periodical survey on board

To ensure the engine continues to fully comply with the NOx limits, a periodical

survey has to be repeated every five years. During the periodical surveys, the

surveyor will check whether all of the engines installed on board are verified to

remain within the parameters and components and adjustable features recorded in the

technical file.

If any substantial modifications are made, a complete NOx emission measurement

has to be carried out.  In this case, the owner has one more verifying option to

choose, the direct measurement and motoring method, in addition to the engine

parameter check method and simplified measurement method.

3.5 Technical file

Every diesel engine should be provided with a technical file, prepared by the engine

manufacturer and approved by the administration or authorized organization.  The

technical file should identify those components and settings which influence NOx

emissions and confirm the correct specification to ensure compliance with the

regulation.

The term of  ‘technical file’ can be seen in many different sections of the NOx

Technical Code, requiring specific relevant information at each different condition as

follows:
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• Engine design which may influence NOx formation

- components,  settings and operating values

- definition of engine group specification

• Engine performance data

- test bed engine performance data

- NOx parameter sensitivity

- NOx emission for given performance parameters versus load

• On board verification procedure

- components (I.D number)

- setting ranges

- operational parameters (NOx value or parameter range)

- specification of spare parts

• Report of test-bed testing

- engine information and set-up ( Sample probes and position)

- test cell specification and calibration of analyzer

- measured parameters (Calibration data)

- procedures for actual measurements

- fuel oil and lube oil specification

- actual corrections of measured data

• after issuing of the EIAPP, IAPP Certification and in service

- engine record book (status of engine maintenance, change of

components and performance log)

- emission data

- fuel oil and lube oil specification

3.6 NOx emission measurement on a test bed

The NOx code includes detailed specifications on measurement procedures on a test

bed.  The measurement and calculation of exhaust gas emissions is based on the ISO
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standard 8217.  When measuring exhaust gas, to assess NOx emission level, not only

NOx but also Carbon monoxide (CO), Hydrocarbons (HC), Oxygen (O2), Carbon

dioxide ( CO2) and Sulphur dioxide (SO2) have to be measured by using analyzers

that comply with the specifications in the NOx code.

In addition to the exhaust gas measurements, engine torque, engine speed, fuel

consumption, fuel rack position, charging air temperature and pressure, exhaust gas

temperature and ambient temperature/pressure/humidity will be measured.  The

analyzers comply with the specifications given in the NOx code with regard to

measurement method, accuracy and performance sensitivity against other exhaust

components.  The exhaust gas is taken from the funnel via a common probe and then

distributed to the various analyzers.  Dependent on the type of analyzer, the

calibration uses either nitrogen or a special “zero gas” for zero point adjustment.  The

valid measuring range is set with a calibration gas “span gas” of suitable

concentration corresponding to the exhaust gas component to be measured. (Gatjens

H J, 1999)
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Chapter 4

FORMATION OF NOx FROM MARINE DIESEL ENGINES

4.1 Exhaust gas of diesel engines

Exhaust emissions from marine diesel engines largely comprise nitrogen, oxygen,

carbon dioxides (CO2) and water vapour, with smaller quantities of carbon monoxide

(CO), sulphur oxides (SOx), nitrogen oxides (NOx), hydrocarbons and particulate

material. Among exhaust gas from diesel engines, CO2, SOx, NOx, HC and

particulate material are regarded as pollutants. The typical composition of exhaust

gas from a diesel engine is shown in Fig. 4.1

Fig. 4.1 Typical emission from a low-speed diesel engine.

Source: MER, 1997, pp14.
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Several emission limitations are on the way globally, but the main focus has so far

been on reducing the NOx and SOx emissions because those threat human health,

vegetation and the environment.  The Annex VI of MARPOL 73/78 consequently

regulates only NOx and SOx emissions from diesel engines for the time being.

However, because the use of fossil oil in diesel engines for main propulsion and

auxiliary services is a large contributor to atmospheric pollution it is likely to be the

focus of further legislation in the future.  There is a growing consensus, especially

within certain parts of Europe and United States, that other pollutants from diesel

engines and other combustion sources in addition to NOx and SOx emission should

also be reduced.

4.1.1 Sulphur Oxides (SOx)

The formation of SOx is proportional to the sulphur content in the fuel.  All sulphur

in fuel will remain in the exhaust gas. e.g. 1 kilogram of sulphur in fuel is oxidized to

SO2 and SO3 during and after the combustion to 2 kilograms of SO2 in exhaust gas

(the ratio of SO2 to SO3 is about 95:5 in diesel exhaust). Therefore reduction of the

sulphur content in marine fuel is one feasible method to reduce SOx emission.

(Gotmalm O.A.1992).  An alternative way of removing SOx from exhaust gas can be

effected by water washing the gas in a scrubber, but this leaves another disposal

problem of sulphuric acid in the water, which consequently must be neutralized

chemically.

The SOx contributes environmentally to the formation of acid rain. SOx in the

exhaust gas will eventually be washed from the atmosphere by rain and that will

increase the acidity of the soil.  Operationally, SOx directly contributes to the low

temperature corrosion to exhaust system, cylinder liner and cylinder head. It is
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therefore an undesirable compound and will be subject to increasing legislation

limiting the sulphur content in bunker oil.

As indicated in Chapter 2, Regulation 14 of Annex IV limits sulphur content in

marine bunker to 4.5%, and especially 1.5% in the SOx emission control areas. Low

sulphur fuel is already available on the market and there are no technical problems

regarding pollution prevention through the use of low sulphur, but it requires a lot of

energy and investments resulting in a considerable increase in fuel cost. Therefore,

the price of fuel oil depends on the sulphur content, a fact that should be considered

when evaluating the use of the low sulphur versus the high sulphur and cleaning

system.

According to some studies, the total heavy fuel oil and marine diesel consumption in

1980 was estimated to be 110 million tons, and sulphur content was calculated to be

2.91 million tons, based on the assumption that the average weight percentage of

sulphur in heavy fuel was 2.82%, and in marine diesel oil 0.94%.  It is possible that

2.91 million tons of sulphur could have been emitted, which is equivalent to 5.82

million tons of SO2.  This figure represent 5.3% of the estimated global SO2

emission. (Okamura B. 1995)

However, there has been no general agreement on the quantity of SOx emission

emanating from ships.  This issue has been addressed in several submissions to the

various meeting within IMO.  Calculations vary from around 6million tons each year,

or some 5% of the total global emission. Other recent studies have indicated that

ship’s SOx emissions are approximately 8% of the world wide SOx emissions.

4.1.2 Carbon Dioxide (CO2)

Carbon Dioxide emission is related to the carbon content of the fuel and is produced

wherever fossil fuel undergoes combustion. There is no realistic method yet to
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control the formation of carbon dioxide in fossil fuel combustion.  However, the

diesel engine is probably the most effective fossil fuel converter so far and hence

produces comparatively less CO2 compared with other external combustion facilities.

(Gotmalm O.A. 1992)

Carbon dioxide is a greenhouse gas contributing to the global warming effect and is

thus subject to wide interest, although it does not scare common people so much

because carbon dioxide is not poisonous.  However, some countries are addressing

the carbon dioxide problem quite firmly today and the issue may become more

important in the future.  IMO has been tasked by the United Nations to take measures

to reduce greenhouse gas emissions from merchant ships.

4.1.3 Carbon Monoxide (CO)

Emission of carbon monoxide of diesel engines is a function of the air excess ratio

and combustion temperature.  The formation is strongly influenced by uniformity of

the air/fuel mixture in the combustion chamber.

CO is a highly toxic gas and contributes to smog and ground ozone formation.  CO

stems from poor combustion at low combustion temperature. Generally, the CO

emissions from marine diesel engine are low in comparison with other industrial

sources due to the high thermal efficiency of the diesel process.

4.1.4 Hydrocarbons (HC)

During the combustion process a very small part of the hydrocarbon in the fuel is left

unburned up to 300ppm depending on the fuel type and the engine design and

adjustment. The unburned hydrocarbons are normally stated in terms of equivalent

CH4.
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Hydrocarbons are considered carcinogenic, contributing to the greenhouse effect.  At

the 44th session of MEPC, the US delegation highlighted concerns that NOx and HC

emissions from ships may be associated with climate change.  Although NOx is not a

green house gas, it is an ozone precursor that may react with HC to produce low-level

ozone which is a greenhouse gas. The US paper says that in remote ocean areas

restricting HC emissions could be the best route to minimize ozone production.

(Motor Ship, 2000,April)

4.1.5 Particulates  (PM)

Particulates contribute to formation of smog but have also a detrimental effect on

turbo-charger and exhaust gas boiler performance. Particulates in a diesel engine is

defined in the ISO 8178 standard as ‘any material collected on a specified filter

medium after diluting the exhaust gases with clean filtered air to a temperature of

less than or equal to 325k (52 °C) as measured at a point immediately upstream of

the primary filter.’

Particulate emissions originate from partly burned fuel, partly burned lube oil, ash

content of fuel oil and cylinder oil.  Even if the fuel is atomized in the combustion

chamber the combustion process involves small droplets of fuel, which evaporate,

ignite and are subsequently burned.  During the process a minute part of the oil will

be left as a nucleus mainly comprising carbon.  Particulate emissions thus vary with

the fuel oil composition and with the lube oil type and dosage.

Particulates in the form of carbon soot, metal oxides, sulphates and unburned HC are

a result of insufficient combustion and fuel and lubricating oil impurities impossible

to combust in a diesel engine. A higher combustion temperature is very effective in
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reducing PM in diesel engines if low sulphur fuel is used, especially if the engine is

well tuned. (Gotmalm O.A. 1992)

4.2 NOx formation

4.2.1 Overview of the NOx problem

According to Nevers N.D. (1995), although nitrogen forms eight different oxides, our

principal air pollution interest is in the two most common oxides: nitric oxide (NO)

and nitrogen dioxide (NO2).  In addition, we are beginning to be concerned with

nitrous oxide (N2O).  Ordinary air contains almost 80% nitrogen (N2) and some of

this nitrogen is oxidized to NOx (NO, NO2 and N2O) during the combustion process.

NO is a colorless gas that has some harmful effects on health, but these effects are

substantially less than those of an equivalent amount of NO2.  In the atmosphere and

in industrial devices NO reacts with O2 to form NO2, a brown colored gas that is a

seriously respiratory irritant.  NO and NO2 are often treated together as one problem

of as a quasi species, and written NOx.  Most regulations for NOx emissions base all

numerical values on the assumption that all of the NO is converted to NO2.  The

conversion of NO to NO2 will continue in the atmosphere. NO2 will be washed out

by rain and eventually increase the acidity of the soil by acid rain. NOx are released

to the atmosphere chiefly by large combustion sources such as fossil fuel fired power

plants and oil fired diesel engines.

NOx is also known as one of the reasons for ozone depletion which has an adverse

effect on health in addition to acid rains.  According to the report submitted by the

United States at the 44th session of MEPC, NOx emissions from marine diesel

engines are of concern to the international community due to their contribution to

ground level ozone.  Ground level ozone is formed when hydrocarbons and oxides of
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nitrogen react in the presence of sunlight.  Over the past few decades, many

researchers have investigated the health effects associated with both sort-term and

prolonged acute exposures to ozone.

Emission values for various components of air pollution from marine diesel engines

are influenced by fuel oil quality and engine condition, and it is difficult to define

representative emission factors. A report submitted by Norway at MEPC concluded

that the international shipping contributes with about 7 % of the world total discharge

of NOx.  Whilst, according to the document submitted by United States at 44th

session of MEPC (1999), some studies estimate the total contribution of marine

diesel engines to NOx inventories at 4 % or higher.  A recent study by Corbett and

Fischbeck estimates that these engines may contribute as much as 14 % of the world-

wide nitrogen emissions from fossil fuels annually.

4.2.2 Thermal, Prompt and Fuel NOx

NOx formation occurs by reaction between nitrogen and oxygen in the combustion

air (thermal NOx), by reaction between exhaust gas hydrocarbons and combustion air

oxygen (prompt NOx) and by the reaction between nitrogen bindings in fuel (fuel

NOx).  Thermal NOx is decisive for total emission and all the abatement methods are

targeted to reduce that component.  The formation of NOx in the combustion

chamber is mainly influenced by the temperature and oxygen concentration: the

higher the temperature and the longer the residence time at temperature is, the more

thermal NOx will be created. (Schiff & Hafen, 1998)

According to Nevers N.D. (1995), NOx are found in combustion gases as thermal,

prompt and fuel nitrogen oxides. Fig. 4.2 shows estimates of the contribution from

the thermal, prompt and fuel mechanisms to NOx emissions from coal combustion.

Below about 1,300 °C�the thermal NOx mechanism is negligible compared with the
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other two, while at the highest temperature it is the most important.  If, based on the

thermal NOx curve alone, we would predict approximately zero NOx would be

produced at temperatures below 1300˚C.  At temperatures above 1500˚C, NOx

emission rises very sharply. Therefore, lowering the peak combustion temperature is

a very effective means of reducing the amount of NOx formed.  Therefore, in diesel

engines, methods like retarded fuel injection or water in burning  are aiming to

reduce those peak temperatures and thus also lower the NOx emission.

Fig. 4.2 Estimated contribution of three NOx. Source: Nevers N.D. 1995, pp378.
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4.2.3 Thermal NOx

According to Nevers N.D. (1995), the thermal NOx builds up by the reaction of

atmospheric nitrogen with oxygen by the simple heating of nitrogen and oxygen,

ether in a flame or by some other external heating such as a lighting bolt. Thermal

NOx are formed very quickly by simple heating of oxygen and nitrogen.  The gas is a

result of the interaction between nitrogen and oxygen with some of the active carbon

species derived from the fuel in the flames. NOx are not observed in flames of fuels

with no carbon, e.g. H2.  They cannot be formed only by heating oxygen and

nitrogen, the participation of some active carbon species from fuel is also required. In

diesel engines the thermal NOx, being mainly a function of the peak combustion

temperature, is decisive for the total NOx emission and most of the reduction

methods are targeted to reduce the thermal NOx.

First of all, based on the Zeldovich kinetics of thermal NOx formation, the most

important reactions for producing NO and NO2 in flames are:

NO + 0.5O2 ↔  NO2                                        (4.1)

N2+ O2 ↔  2NO                                          (4.2)

Both of these equations are reversible reactions that do not go to completion.

However, the reactions shown in Eqs. (4.1) and (4.2) do not exactly proceed as

written in those equations.  Rather, they proceed by means of intermediate steps

involving highly energetic particles called free radicals.  The free radicals most often

involved in combustion reaction are O, N, OH, H and hydrocarbons that have lost on

more hydrogen, e.g., CH3 or CH2.  These materials are very active and energetic and

exist in significant concentrations only at high temperatures. In principle they can be

formed by equilibrium reactions like the following equations:

N2 ↔�2Ν================================================(4.3)

O2 ↔�2O                                                (4.4)

H2O ↔�H + OH                                           (4.5)
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Fig. 4.3 Concentrations of thermal NOx as a function of time and temperature.

Source: Nevers N.D. 1995, pp382.

The most widely quoted mechanism for thermal NOx formation reaction is that of

Zelovich. It assumes that O radicals attack N molecules by this reaction,

O + N2�↔�NO + N                                          (4.6)
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and that N radicals can form NO by the reaction

N + O2 ↔ NO + O         �                               (4.7)

A more complex version of the Zelovich mechanism is shown in the following

equation

N + OH ↔ NO + H                                          (4.8)

From the above equations various degrees of simplification of those mechanisms can

be made.  According to the Zeldovich simplification of the kinetics of thermal NOx

formation, Fig 4.3 clearly shows the expected time-temperature relation for one

specific starting gas composition. The formation of NOx in flames can be greatly

reduced by manipulating the time, temperature and oxygen content of the flame. Low

speed diesel engines with slow burning processes and high air / fuel ratios have the

highest emissions due to the long time the oxygen is allowed to react with nitrogen.

4.2.4 Prompt NOx

Also, NOx builds up by reaction between exhaust gas hydrocarbon and combustion

air oxygen (prompt NOx).  According to Noel de Nevers (1995), the prompt NOx

refers to the nitrogen oxide that forms very quickly as a result of the reaction of

nitrogen and oxygen with some of the active carbon species derived from the fuel in

flames. They are not observed in flames of fuels with no carbon, e.g., H2.  They

cannot be formed by simply heating oxygen and nitrogen, but the participation of

some active carbon species from the fuel is required.

During the first part of combustion, the carbon-bearing radicals from the fuel react

with nitrogen by the following equation;

CH + N2 ↔ HCN + N                                     (4.9)

and several similar reactions involving the CH and C radicals.  The N thus produced

attacks O by the following equation to increase the amount of NO formed;

N + O2 ↔ NO + O                                       (4.10)
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Then the HCN partly reacts with O2 producing NO by�the following equations;

HCN + OH ↔ CN + H2O                                  (4.11)

NH + OH ↔ N + H2O                                    (4.12)

CN + O2 ↔ CO + NO       �������������������(4.13)

4.2.5 Fuel NOx

Fuel NOx are formed by the conversion of nitrogen, which is originally present in the

fuel, to NOx.  According to Noel de Nevers (1995), most of the fuel nitrogen is

converted in flame to HCN, which then converts to NH or NH2.  The NH and NH2

can react with oxygen to produce NO + H2O, or they can react with NO to produce

N2 + H2O. Thus the fraction of the fuel nitrogen that leaves the flames as NO is

dependent on the NO/O2 ratio in the flame zone. Keeping the oxygen content of the

gases in the high temperature part of the flame low, significantly lowers the fraction

of the fuel nitrogen converted to NO.

Some of the nitrogen oxides emitted to the atmosphere are due to nitrogen

contaminants in fuels, but the contribution of that nitrogen to the total NOx in the

combustion products is minimal.  Typically, fuel NOx accounts for only about 10 to

20 percent of the total NOx emissions. Thermal NOx is the main contributor to total

NOx emissions.

In comparison, sulphur oxides are formed from the sulphur contaminants in fuel.

Thus removing all sulphur from the fuels would completely eliminate sulphur

emission from fuel combustion. Furthermore, most of fuels used in diesel engine

contain little nitrogen.
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Chapter 5

REDUCTION METHODS OF NOx

5.1 General concept of NOx reduction

The diesel engine has so far been developed under the two major technologies of

thermal efficiency and reliability.  At present the diesel engine development is also

facing another major theme, the environment problem, and most of the technological

efforts concentrate now on this matter. Engine builders have to look in this direction

and must make efforts to solve the environmental problems that combined with good

engine performance and high reliability were previously developed.

As for marine diesel engines, since and long before the legislation of MARPOL

Annex VI, all concerns are on the reduction of NOx emissions. Practical methods for

marine diesel engine NOx reduction can be divided into Primary methods and

Secondary methods.  It has been known there are no difference between slow,

medium and high-speed engines because they all have diesel cycle with air

compression and combustion process in high temperature and high pressure

condition.

5.1.1 Primary methods
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Primary methods are aimed at reducing the amount of NOx formed during

combustion.  The basic aim of most of these measures are to lower the maximum

temperature in the cylinder, since this result inherently in a lower NOx emission.

The low NOx combustion system is based on a combination of compression ratio,

injection timing and injection rate. Therefore, when considering NOx reduction

method it should be taken into account that all different NOx reduction methods can

affect each other.

Primary methods can be categorized as follows:

• Altered fuel injection

- Fuel nozzle modification (5.2.1)

- Retarded fuel injection (5.2.2)

- High pressure fuel injection (5.2.3)

• Water addition

- Direct water injection (5.3.1)

- Water emulsified fuel (5.3.2)

- Stratified water injection (5.3.3)

- Intake air Humidification (5.3.4)

• Combustion air treatment

- Exhaust gas recirculation (5.4)

- Adjustment of inlet /exhaust valve (5.2.5)

• Change of engine process

- Compression ratio (5.2.4)

5.1.2 Secondary methods
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Secondary methods, aimed at removing NOx from the exhaust gas by downstream

treatment. The Selective Catalytic Reduction (SCR) is the most well known method

of so called exhaust gas after treatment.

5.1.3 Manufacturer’s application

Table 5.1  Manufacturers’ NOx method application. Source: Kim J. H. (2000)

NOx reduction Method MBD WNSD MHI

Fuel nozzle modification � � � 

Retarded fuel injection x � � 

Emulsified fuel � � O

Water direct injection x � O

Stratified water injection x � x

Exhaust gas recirculation O O O

Compression ratio O � � 

Intake air Humidification O x x

Modification of Turbocharger � � � 

Internal

treatment

Adjustment of exhaust valve x � � 

Secondary Selective Catalytic Reduction � � � 

� : Application method to deal with IMO regulation

O    : Not considering  as  an application method to deal with IMO regulation,

         but has been developing/researching

x    : Not considering

� : Application method to deal with further stringent NOx regulation
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Some of the manufacturers’, who are widely involved in Korean shipbuilding

industries, NOx method applications are shown in the table 4.1.  This source is from

an interview with Dr. Kim Jong-Huon who has been dealing with NOx matters  for

many years and is working for Korean Register of Shipping as a manager in the

statutory department.  The abbreviations of the manufacturer are as follows:

MBD : MAN B&W Diesel

WNSD : Wartsila NSD

MHI : Mitsubishi Heavy Industries

5.2 Combustion treatment methods

In recent years diesel engines have been modified for low NOx formation by

optimization of the injection timing, rate and spray configuration, the valve timing,

the supercharging, the compression ratio and the mixing in combustion space. All

these methods are targeting to lowering the peak combustion temperature, which is a

very effective means of reducing the amount of NOx formed.

With these measures, unfortunately, the amount of PM and HC will increase instead,

and there is a substantial fuel penalty as efficiency drop due to poor combustion.

Therefore, this side-effect matter will be discussed with low NOx formation in the

following paragraphs.

5.2.1 Fuel nozzle modification (Slide type/Multi-hole)

Different fuel nozzle types and models have significant impact on NOx formation,

and the intensity of the fuel injection has also an influence. The NOx formation is

influenced by the formation and combustion of the fuel/air mixture, the local

temperature level and the oxygen concentration in the fuel spray area.
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According to MAN B&W (1996), they have developed a fuel valve incorporating a

conventional conical spindle seat as well as a slide valve inside the fuel nozzle,

minimizing the sack volume and thus the risk of after-dripping. The configuration

substantially reduces NOx emissions as well as smoke and CO emission but the

expense of a slightly higher fuel consumption. Fig. 5.1  shows the design of the mini-

sac and slide fuel valve.

Fig. 5.1 Design of the mini-sac and slide fuel valve. Source: Kim J.H. 1999.

NOx formation from the diesel engine is estimated to be attributable to the generation

of the local combustion field caused by the non-uniformity of the fuel distribution in

the combustion chamber.  Reduction of the NOx formation ratio has been obtained

by increasing the number of injection holes of the fuel nozzle so that the non-uniform

fuel distribution is changed to as uniform a combustion field as possible, and the

combustion is free from the locally high temperatures.

As MER (1997, February) reported, “MAN B&W cites tests with a K90MC engine at

90% load which yielded the following results (NOx ppm/15% oxygen)”:
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Standard fuel valve/nozzle: 1594ppm

Six-hole fuel nozzle:           1494ppm

Slide-type fuel nozzle:         1232ppm

As for multi-hole nozzle, a test was carried out with a standard fuel atomizer having

10 injection holes, and with a fuel atomizer having 14 injection holes while the

injection angle and total area of the injection holes are the same, and a fuel atomizer

with the changed nozzle sac capacity.  When the number of injection holes is the

same, little difference was shown in NOx value by size of the nozzle sac.  In the

standard condition, NOx is reduced by 14% if the number of the injection holes is

changed from 10 to 14 while the fuel consumption was degraded by 0.9%.  NOx was

reduced by 16% while the fuel consumption is increased by 1%. The exhaust gas

temperature was little changed. (Tonabe, Honda & Otani, 1999)

5.2.2 Retarded fuel injection

As can be seen in chapter 3, NOx formation is a function of the temperatures and of

the partial pressure of oxygen and nitrogen at the location in the combustion zone

with the highest temperature, and of the time span in which this happens. Retarding

the start of injection, to reduce the firing pressure, is a well known and fairly simple

way of reducing NOx emissions, which can be used on most engine types.

Primary NOx control methods aim at reducing the local peak temperatures in the

combustion chamber. Reducing the firing pressure via injection retardation will

readily both lower the peak temperature and the NOx emissions. However, it also

reduces the maximum temperature and leads to a higher fuel consumption. For a long

time, however, we thought we were doomed to accept the trade-off in fuel

consumption caused by low-NOx adjustments.  The big challenge has consequently

been to combine low-NOx emissions with low fuel consumption.
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Ignition Retardation can result in a 30% reduction of NOx emissions by reducing

Tmax, as combustion is delayed from TDC.  Residence time at high temperatures is

also reduced, thereby contributing to NOx reduction.  However, in addition to the

increase in specific fuel consumption, this method can also increase particulates.

Increased particulates can result in higher rates of turbocharger fouling as well as

insulating deposits in the exhaust gas boiler. In spite of these disadvantages, the

injection retardation do not require extra system elements, and therefore this measure

is commonly used to optimize the emission behavior for on-road engines.(Leva,

1995)

Electronically controlled fuel injection and engine management systems will be

further developed and will provide the ability to retain optimum combustion

characteristics with regard to high energy efficiency and low emissions at all power

levels and for varying fuel qualities. The electronic-hydraulic system on the engine

can perform a pre-injection before the main injection. (Hadler, 1995)

5.2.3 High-pressure of fuel injection

An increased fuel injection rate leads to a short and distinct injection period.

Injection valve opening pressure is raised to improve atomization at the start and stop

of injection, and to maintain the higher pressure needed for a shorter injection period

and reduced ignition delay.  Consequently, this method lowers the maximum

temperature in the cylinder, thus resulting in low NOx emission

According to Murayama (1994), a study shows that the injection pressure of 150-

160MP with extremely retarded injection timing will result in smoke free

combustion.  To achieve smoke-free combustion without increased in specific fuel

consumption, noise and vibration smaller injection nozzle diameters are necessary.



52

With smaller nozzle diameters, specific fuel consumption does not deteriorate despite

the longer injection duration because atomization and turbulence improve mixing and

so shorten the combustion duration.  Pilot injection is introduced for the control of

injection rate in the early stages of high-pressure injection.  Even though direct NOx

reduction by pilot injection is only a small amount, a simultaneous reduction of NOx

and particulate can be obtained.  35% reduction of NOx and 39% reduction of

particulate are possible without an adverse effect on fuel consumption.

5.2.4 The increased compression ratio

The low NOx combustion system is based on an optimized combination of

compression ratio, injection timing and injection rate.  The parameters affecting the

combustion process are manipulated to secure a higher cylinder pressure by

increasing the compression ratio.

According to Vogt (1995), the increased compression ratio is one of the most

efficient measures which can easily be implemented both technically and in terms of

costs.  This is also beneficial to an improved ignition of heavy fuels of ever declining

quality.  However, the increase in compression ratio in connection with a reasonable

design of the combustion chamber is subject to certain limits set by the stroke/bore

ratio.

According to Wartsila Diesel, the compression ratio of the standard Vasa 32 engine

was increased from 12 to 14:1 to secure a sufficiently high compression temperature.

The smaller combustion space dictated reshaping of the piston crown and cylinder

cover flame plate to allow for the fuel jets and good air/fuel mixing.  A new piston

was developed for the higher maximum firing pressure raised by 10 bar to 165 bar.

(MER, 1997, June)
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5.2.5 Reduction of the Overlap Period of Inlet/Exhaust Valve

When the inlet/exhaust valve overlap period is reduced by some degrees compared

with an ordinary setting, the scavenging process will be strongly disturbed and

instead of fresh air a relatively high amount of burnt gas will be trapped in the

cylinder.  This trapped gas acts as an inert gas for the following combustion and thus

reduces the NOx formation.  This method will have similar effects as exhaust gas

recirculation method.

Unfortunately, there is not only the positive effect on NOx reduction by this measure,

but also some other negative effects.  Depending on the valve overlap, the exhaust

gas temperature and the temperature of the exhaust valve will increase and perhaps

exceed the limit for HFO-operation.  Also the soot formation will increase and can

exceed the visibility limit.  A careful design of the combustion chamber and the

injection components, such as injection pressure, injection shape and nozzle

configuration, can diminish these negative effects.( Vogt, 1995)

Another similar alternative method is to retard the inlet valve closing timing.  When

the inlet valve closing timing is delayed and the actual compression ratio is reduced

in a condition where the charged air temperature is kept constant, and the charged air

pressure is increased, the compression temperature is dropped, and the combustion

temperature is also dropped correspondingly, and NOx can be reduced. (Tonabe,

Honda & Otani, 1999)

5.3 Water based method

Introducing water into the combustion chamber can reduce peak combustion

temperature, thus reducing the amount of nitrogen oxides formed.  This can be done
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by direct injection of water, by introduction of water by use of an emulsified fuel or

by humidifying the scavenge air.

As The Motor Ship (2000, April) reported, “Both Wartsila NSD and MAN B&W

have recently announced ‘smokeless’ medium- speed engines which use of water to

reduce NOx levels and the amount of particulate. Wartsila NSD uses direct water

injection through a single valve with two needles, while MAN B&W prefers fuel

water emulsion. Mitsubish has three year’s in-service experience of a medium speed

engine with stratified fuel injection.”

5.3.1 Direct water injection

Water injection into the combustion process reduces NOx formation.  The

combustion temperature peaks will decrease, thus reduce NOx.  Water has a

relatively high molar heat capacity and the introduction of water reduces the partial

pressure of oxygen. The heat load is also reduced by the evaporation process, which

consumes energy.

The NOx reduction potential for water direct injection method is typically 50-60%.

With the direct water injection, fuel consumption will slightly increase.  The water

consumption is high up to 50% of the fuel consumption, and the operational cost is

relatively low than the water emulsified fuel method.  Investment costs for the special

nozzles and control devices must be taken into consideration.  Especially, the fresh

water generation must be capable enough for the large amount of water consumption.

As the Marine Propulsion International (1999, July) reported, Wartsila NSD has

developed and applied direct water injection (DWI), i.e. injection of water directly

into the combustion chamber via a separate nozzle. Large amounts of  water can be

used, enabling a substantially higher NOx reduction level, 50-60%, than can be
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achieved with the alternative methods of water introduction.  The key element of the

design concept is the combined injection valve through which both fuel and water are

injected.  The same valve is used for operation in water injection and fuel injection.

One needle in the combined nozzle is used for water injection, and the other for fuel

injection.  Water injection starts before fuel injection, in order to cool down the

combustion space to ensure low NOx formation.

With this method, a high-pressure pump pressurizes the water to 200-400 bar. After

filtration and dampening of the pressure pulses the water is fed, at the correct

pressure, to the injectors via a regulating valve.  For safety reasons the water supply

into each cylinder incorporates a sensitive mechanical flow fuse which quickly shuts

off the water in case of excessive water flow.  Water injection and timing is

electronically controlled and can be adjusted by programming the control unit from a

keyboard. (MER, June, 1999)

5.3.2 Water emulsified fuel

It has been verified that water emulsification of the fuel oil can result in a significant

reduction of NOx emissions. The influence of water emulsification varies with the

engine type, but generally 1% of water reduces NOx by 1%.  Emulsification is

performed before the circulating loop of the fuel oil system, in a position in the fuel

flow to the engine from which there is no return flow (Fig 5.2).  Thus it is the fuel

flow that controls the water flow.  The flow can also be controlled by measuring the

NOx in the exhaust gas. (MAN B&W, 1996)

According to Leva (1995), the test engines demonstrated that NOx reductions of up

to 35% are possible with a fuel water emulsion of 50/50.  The implementation of this

technique requires a high capacity fuel handling system on the engine to maintain
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unaffected power output. Water rates in the 10% range have resulted in NOx

reductions of between 6-12%.

Fig.5.2 Water emulsification system on a low speed engine.  Source: MER, 1997,

May. pp.22

If a  water based method is selected the fresh water capacity must be enlarged in most

cases.  A 14 MW engine installation may need 30 tons fresh water/day just for NOx

reduction.  This is well over normal demand e.g. on a cargo ship and must be

considered as an additional cost. Also, the method of emulsification and subsequent

stability of the emulsion are important to the efficiency of this method. (Schiff &

Hafen,1998)

According to the MAN B&W (1996), it was verified years ago that water

emulsification leads to a significant reduction of NOx with no effect whatsoever on
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the maintenance costs. A standard engine design permits the addition of some 20% of

water at full load, thanks to the volumetric capacity of the fuel injection pumps, but

this does not represent a limit from the combustion point of view.

The emulsification is done before the circulating loop of the fuel oil system, i.e. at a

point in the fuel flow to the engine from which there is no return flow that controls

the water flow. The addition could also be controlled by actually measuring the NOx

in the exhaust.  This would be the case if continuous monitoring of NOx was

required.  For vessels using emulsified fuel, a specifically designed safety system is

built into the external fuel oil system so that an electrical black out on board will not

influence the fuel /water emulsification stability, and the engine can be started up

without changing to fuel without water.

According to the Motor Ship (2000, April), the fuel emulsification system favored by

MAN B&W’s IS (Invisible Smoke) engines use a homogeniser to mix fuel and water

on the low-pressure side of the module.  The increased volumes require larger

diameter fuel pipes, and they must be able to withstand the higher pressure needed to

ensure the water will not vaporize.  Higher capacity fuel pumps are also required, and

these impose greater loads on the camshaft.  This makes retrofitting difficult,

although the standard fuel pumps have some spare capacity that may be utilized. On

the low-speed side MAN B&W has used ultra-sonic homogenisers to mix the fuel

and water for some land-based engines.

With fuel water emulsion one or two very small water droplets are contained inside

each fuel droplet. It take the peak off the heat release but leave the combustion

duration unaltered. This provides the maximum NOx reduction for a given volume of

water with least fuel penalty.  As the Motor Ship (2000, April) reported, “A recent

test on a 48/60IS engine showed NOx levels of around half the IMO limit by adding

only 15% water.  The usual rule is 1% water equals 1% NOx reduction.  MAN B&W
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says fuel consumption is 176 g/kWh and smoke emission only approaches the

visibility limit when load is reduced to 25%.  Previous tests with direct water

injection showed a fuel consumption penalty of 4-5 g/kWh when 40-50% NOx

reduction is required.”

5.3.3 Stratified fuel-water injection

Water can be added to the combustion chamber through separate nozzles,by means of

the stratified injection of water and fuel from the same fuel nozzle. Mitsubishi favors

stratified fuel/water injection which uses a single injector with two inputs.  A pilot

injection of fuel is followed by water, fuel and water again, and ends with fuel.  An

electronically controlled hydraulic circuit is used to create and time the water

‘insertions’ to the fuel stream.  The company says this system can be retrofitted

without machining of the cylinder cover and can give up to 50% reduction in NOx

without increasing the wear rates.  A year-long trial onboard a 5,000 dwt training

vessel fitted with a 6UEC52 engine showed the system to be reliable. (The Motor

Ship, 2000, April)

5.3.4 Humidification

Humidifying the scavenging air is another way of introducing water into the

combustion zone by means of water or steam.  The NOx reduction potential in this

case is about 20%, because the amount of water into the cylinders is restricted by the

water dewpoint in the air manifold.  However, too much water in the scavenge air

may be harmful to the cylinder condition. (MER, 1997, February)
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5.4 Exhaust Gas Recirculation (EGR)

Exhaust gas recirculation method means that exhaust gas, with a low oxygen content,

is introduced into the combustion chamber by an independent blower. Some of the

exhaust gas is cooled and cleaned before recirculation to the scavenge air side. When

the combustion charge air contains less oxygen and the CO2 has a higher heat

capacity than nitrogen and oxygen, lower peak temperatures can be expected using

this method.

Its effect on NOx formation is partly due to a reduction of oxygen concentration in

the combustion chamber, and partly due to the content of water and carbon dioxide in

the exhaust gas.  The high molar heat capacities lower the peak combustion

temperature which curbs the formation of NOx. (MER, 1999, May)

In principle, exhaust gas can be recirculated both before and after the turbocharger, as

shown in Fig.5.3, but in both cases the gas has to be cooled and cleaned.  EGR can be

a severe drawback, especially on board a ship, as influent from the exhaust gas which

contains sulphur in a non-disposable form as well as unburned hydrocarbons, soot

and ash.  EGR could be the right solution in process, in refineries etc, and the concept

is still being studied for shipboard use. ( MAN B&W, 1996)

According to MAN B&W (1996), the partial pressure of the reagents of oxygen and

nitrogen can only be influenced by changing the specific amount of air allowed into

the engine per kWh, or by changing the ratio between the two. Changing the specific

amount of air for a normally-controlled engine does not reduce the pressure, as the

firing pressure control system will adjust to the specified level, so the only effect will

be a higher heat load on the combustion chamber when the air amount is reduced.

NOx will hardly be influenced at all. The ratio between oxygen and nitrogen can be

changed by exhaust gas recirculation (EGR).  If we recirculate 15% of the exhaust
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gas the resulting oxygen concentration in the intake air will be reduced from 18-21%,

and the impact on NOx formation will be significant.

Fig.5.3  Layout of EGR system. Source: MER, 1999, May, pp.21.

The disadvantages of this method are increased smoke and particulate quantities and

a potential for increased turbocharger and exhaust gas boiler deposition.  Fouling of

these components will result in reduced thermal efficiency. Moreover there are good

possibilities of low temperature corrosion in the gas cooler and its downstream

components. Due to poor fuel quality, especially in the marine diesel engine, the

EGR system can be problematic because it increases soot emission and can cause

increased engine wear.  This system, however, is not currently commercially

available for HFO burning, it is widely used in automotive applications. (Leva, 1995)



61

5.5 Selective catalytic reduction

Selective Catalytic Reduction (SCR) is the most well known method of exhaust gas

after treatment so far.  Typically, very high NOx reduction levels, i.e 90-95%, are

achievable. Therefore, it can be applied if further stringent NOx reduction is

regulated. The reduction of the nitrogen oxides takes place by injecting ammonia or

urea into the exhaust gas at a temperature of 320-420 ˚C. When the ammonia/exhaust

gas mixture is passing through a catalyst the nitrogen oxides, which primarily consist

of NO and NO2, are converted according to the following reaction schemes:

4NO + 4NH3 +O2 ↔ 4N2 + 6H2O

6NO2 + 8NH3 ↔ 7N2 + 12H2O

As can be seen from the above schemes, this method involves no disposal problem

because the conversion of the nitrogen oxides does not create any secondary

pollution, as the products formed are only nitrogen and water vapour.

The degree of NOx removal depends on the amount of ammonia or urea added

(expressed by the NH3/NOx ratio).  At high NH3/NOx ratio, high degree of NOx

removal can be obtained, but at the same time the amount of unused ammonia (called

the NH3 slip) in the cleaned flue gas will increase.  It is desirable that the

concentration of unused ammonia in the cleaned gas is as low as possible, because of

cooling of the flue gas in the downstream boiler or heat exchanger, the ammonia may

react with SO3 in the exhaust gas and lead to fouling of the heating surface by

ammonium sulphates. (Sondergaard, 1995)

To solve the above mentioned problem MAN B&W introduced following technique:

the amount of NH3 injected into the exhaust gas duct is controlled by a process

computer, dosing the NH3 in proportion to the NOx produced by the engine as a
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function of engine load.  The relationship between the NOx produced and the engine

load is measured during test runs on the engine test bed.  The relationship obtained is

programmed into the process computer and used for the feed-forward control for the

NH3 dosage.  The ammonia dosage is subsequently adjusted for bias by a feed-back

system on the basis of the measured NOx outlet signal. A schematic layout of the

system design is shown in Fig. 5.4. (MAN B&W, 1996)

Fig. 5.4 Schematic layout of SCR system.  Source: Wright & Burlingham, 1996,

pp.48.
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The SCR reactor contains several layers of catalyst.  The catalyst volume and the size

of the reactor depend on the activity of the catalyst, the desired degree of NOx

reduction, the NOx concentration, the flue gas pressure and the acceptable NH3 slip.

The amount of catalyst can be expressed by the term velocity (abbreviated NHSV),

which is defined as the number of cubic meters of exhaust gas per hour which are

treated per treated per cubic meter of catalyst.  Fig. 5.5 shows an example of how the

NOx reduction and the NH3 slip vary with the NH3/NOx ratio for two different

catalyst volumes (NHSV).

Fig. 5.5 Calculated NH3 slip and NOx reduction as function of NH3/NOx ratio.

Source: MAM B&W, 1996, pp.11.

As can be seen, both the NOx reduction and the NH3 slip increase with an increasing

NH3/NOx ratio.  It can also be seen that the same NOx reduction can be obtained by
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using only half the catalyst volume just by increasing the NH3/NOx ratio a few

percent.  At the same time the ammonia slip increases considerably.  Therefore, the

maximum acceptable ammonia slip has a strong influence on the amount of catalyst

required.  Normally, the SCR units are designed for a steady state ammonia slip of 5-

10 ppm. (MAN B&W, 1996)

SCR also needs a certain minimum temperature to operate correctly. The SCR

principle is based on a reduction of NOx by catalytic reactions with ammonia or urea

in a temperature range of 320-450 ˚C.  This temperature is dependent on the sulphur

content of fuel according to table 5.2.  Too low temperature and high sulphur content

wll inrease the risk of the catalyst blocking by ammoniumsulphate. The temperature

issue must be considered especially on the engine choice for diesel-electric ships as

constant speed engines have decreasing exhaust temperature at decreasing load.  This

may, in some cases, lead to a too-low temperature for effective SCR operation and

later modifications for the turbo-charging system. (Schiff & Hafen,1998)

Table 5.2 Example of recommended minimum exhaust gas temperature in

catalyst Inlet depending on fuel contents.  Source: Schiff & Hafen, 1998, pp.148.

Sulphur content in fuel 0.5% 1% 1.5-2% 2.5-3%

Minimum catalyst inlet temperature 320 degC 325 degC 330 degC 335 degC

With the lower exhaust temperatures seen in low-speed engines, any catalyst has to

be fitted upstream of the turbocharger.  The temperature of the catalyst becomes

more important if fouling is to be avoided, as the sulphur content rises in the fuel.

In principle, the SCR reactor can be introduced either before or after the turbocharger

of both 2-stroke and 4-stroke diesel engines. The SCR reactor must be placed before

the turbocharger for 2-stroke diesel engines because the exhaust gas temperature is
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too low after the turbocharger.  In 4-stroke diesel engines the SCR reactor has to be

placed after the turbocharger because the exhaust gas temperature is too high before

the turbocharger. (Sondergaard, 1995)

As the Motor Ship (2000, April) reported: “Recently, however, evidence is growing

that SCR manufacturer’ are right in their assertions that sulphur in HFO need not

damage or block the catalyst.  For instance on the vessel “Finn Eagle” burnt HFO

with 2.6% sulphur during the delivery voyage but this did not cause a problem.  Also

the auxiliary engines aboard “Silja Sympohony” and “Silja Serenade” (run on low-

sulphur 0.5% HFO) have had catalysts fitted for five years and recent checks show

they are performing as well as they did when new.”

SCR is not always the best solution in marine applications because it can be bulky

and expensive.  The SCR causes high investment costs and high operating costs due

to these high costs involved in external measures or complicated handling such as the

tank for water injection, and for reasons of reliable effectiveness and safety of

operation. SCR has an average volume of 1 m3/MW and weight of 1kg/kW for

medium speed engine.  Additionally dedicated urea storage tanks, pumps and

injection and control systems must be also provided. Urea consumption is about

20g/kWh for a medium speed engine and 30g/kWh for a low speed engine when the

target NOx value is 2g/kWh. (Schiff & Hafen,1998)

In terms of size, modern low-NOx engines have made it possible to introduce a

compact combined silencer SCR unit, no larger in size than a conventional silencer.

There are several diesel engine power plants equipped with the SCR technique in

operation. The catalyst volume and  the reactor will be smaller when placed before

the turbocharger due to the higher pressure, but introduction of the SCR reactor in

this position may be more difficult.
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When applying the SCR process for marine diesel engines, the catalyst and the

reactor will be exposed to vibrations of a higher degree than on land based power

plants.  The catalyst and catalyst cassettes therefore have to be specially designed to

avoid damage to the catalyst by engine vibrations.

Marine diesel engines are subject to relatively fast load changes. This type of

operation puts a higher demand on the speed of controlling the ammonia addition,

because fast load changes may otherwise lead to peaks either in the NOx emission or

in the NH3 slip. (Sondergaard, 1995)
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In past time, the maritime industry paid little attention to air pollution.  That attitude

was changed when IMO adopted Annex VI to MARPOL 73/78.  Annex VI is

concerned with the prevention of air pollution from ships. Because of the

transboundary effect of air pollution, and the compelling need for many countries to

tackle the growing problems  of its effects on human health and global environment,

IMO agreed to recommend the early implementation to reduce the emission of NOx

from new marine diesel engines.  It has also been agreed that, in order to avoid

unacceptably long delays in the entry into force of Annex VI, the MEPC will review

the impediments to entry into force of the Protocol and any initiate necessary

measures to alleviate those impediments, as a matter of urgency, if it has not entered

into force by 31 December 2002.  Therefore, there is no doubt that Annex VI will

enter into force in the future.

Annex VI of MARPOL 73/78 deals with a wide range of air pollution control matters

including regulations on halons, Hydrochlorofluorocarbons (HCFCs) and other ozone

depleting substances, Nitrogen oxides (NOx), Sulphur oxides (SOx), volatile organic

compounds (VOCs), shipboard incinerators and fuel oil quality.  However, the main

focus has so far been on reducing the NOx and SOx emissions, because the IMO
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regulations call for a 30% reduction in NOx emissions and a 50% reduction in SOx

emissions compared with current levels.

Annex VI to MARPOL 73/78 requires the survey of engines and equipment to be

conducted in accordance with the NOx Technical Code.  When the Protocol of 1997

enters into force, the requirements of the NOx emission restriction will be

retrospectively applied to each diesel engine with a power output of more than 130

kW, which is installed on a ship or which undergoes major conversion on or after 1

January 2000.

According to the NOx Technical Code, all engines within Reg.13 need the Engine

International Air Pollution Prevention Certification (EIAPP Certificate).  This

certificate will be one of the key requirements of issuing the International Air

Pollution Certificate (IAPP Certificate) for the ship.  However, the new Annex VI

has not come into force yet, so guidelines have been introduced to solve this problem

by issuing a sort of interim certificate. The authorized organization (e.g.

Classification Societies) by the flag state can issue the Statement of Compliance

(SOC Certificate).  The SOC Certificate will be transformed into the EIAPP

Certificate when the new Annex VI enters into force.

To avoid certification testing of every engine for serially manufactured engines, the

engine family or the engine group concept may be applied.  In such a case, the testing

is required only for the parent engine, which is the representative of an engine family

or engine group.  If the NOx emission values meet the requirements, the NOx

relevant engine parameters have to be documented in the technical file.  This

technical file of the parent engine has to be the same for all member engines.  Within

an engine family or engine group the SOC Certificates or EIAPP Certificate will be

issued to the parent engine and to every member engine.
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NOx formation occurs by reaction between nitrogen and oxygen in the combustion

air (thermal NOx), by reaction between exhaust gas hydrocarbon and combustion air

oxygen (prompt NOx) and by reaction between nitrogen bindings in fuel (fuel NOx).

Thermal NOx is decisive for the total emission and all the abatement methods are

targeted to reduce that component.  The formation of NOx in the combustion

chamber is mainly influenced by temperature and oxygen concentration: the higher

the temperature and the longer the residence time at temperature, the more the

thermal NOx will be created. Therefore, low speed engines with slow burning

processes have the highest emission due to the long time the oxygen is allowed to

react with nitrogen.

Since or even long before the time the Regulation 13 concerning emission limits of

Annex VI to MARPOL 73/78 NOx were chosen, the marine industry has

continuously researched emission control technologies for marine diesel engines.

Engine manufactures are exploring various ways to develop practical NOx reduction

technologies.  There are the primary methods such as retard injection, fuel nozzle

modification, compression ratio, water direct injection, water emulsification,

electronic controls and exhaust gas recirculation (EGR) and secondary methods such

as selective catalytic reduction (SCR).

Primary methods are aimed at reducing the amount of NOx formed during

combustion.  The basic aim of most of these measures is to lower the maximum

temperature in the cylinder, since this results inherently in a lower NOx emission.

The low NOx combustion process is based on a combination of compression ratio,

injection timing and injection rate. Therefore, when considering the NOx reduction

method, it should be taken into account that all the different NOx reduction methods

may affect each other.
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6.2 Recommendations

When choosing a NOx reduction system, concerns over engine emissions and,

ultimately, legislation in its various forms, will inevitably require all operators to

accept some compromise between minimum environmental impact and optimum

machinery cost, performance economy, thermal efficiency of the engine, simplicity

and maintainability.  Therefore, the choice of NOx reduction system must be initiated

from the requested NOx limit level as indicated in Chapter 3. Thus no additional cost

penalty will be expected.  With current NOx limits, the engine fine tuning method,

e.g. fuel valve modification, retard injection and compression ratio, is sufficient and

have already been feasible to meet NOx limits. Then, if there will be more stringent

NOx limits in the future, the next best solution will be some of the water-based

systems.  If the strictest proposals should be the regulation, then the only possible

choice is based on the exhaust gas after-treatment method such as the compact SCR

Retarding the injection is a relatively simple and cheap way while it involves an

inevitable fuel penalty as is the case with other primary methods.  However, in

addition to the increase in specific fuel consumption, this method can also increase

particulates. In spite of these disadvantages, the injection retardation does not require

extra system elements.  Another similar option is fuel nozzle modification which is

one of currently widely used methods.  This method reduces NOx emissions as well

as smoke and CO emission, but may result in some increase of specific fuel

consumption. Modifications to an engine could also be made to cut NOx, e.g.

changes of the combustion chamber form, compression ratio and inlet/exhaust valve

timing.

Introducing water into the combustion chamber can reduce peak combustion

temperature, thus reducing the amount of nitrogen oxides formed.  This can be done

by direct injection of water or by introduction of water by the use of an emulsified
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fuel.  If a water based method is selected, the fresh water capacity must be enlarged

in most cases.  The NOx reduction potential for the direct water injection method is

typically 50-60%. With the direct water injection method, fuel consumption will

slightly increase, and the water consumption is high, but the operational costs are

relatively low.  Investment costs for the special nozzles and control devices must be

taken into the consideration.  Especially, the fresh water generator must have capacity

enough for the large water consumption.  With fuel water emulsion, one or two very

small water droplets are contained inside each fuel droplet, which takes the peak off

the heat release. This provides the maximum NOx reduction for a given volume of

water with least fuel penalty. However this method needs an additional special

system to mix fuel and water on the low-pressure side of the module. The increased

volumes require larger diameter fuel pipes and they must be able to withstand the

higher pressure needed to ensure the water will not vaporize. Investment costs for

that special system also must be taken into consideration.

Considering the wider legislative possibilities and taking a longer term view, the SCR

represents a potentially viable option. Typically, very high NOx reduction levels, i.e.

90-95%, are achievable. However, the SCR causes high initial investment costs. In

addition, the SCR system has a relatively high operating cost, mainly due to the urea

or ammonia consumption and catalyst replacement. In terms of size, SCR has been

considered as being bulky, but recently modern low-NOx engines have made it

possible to introduce a compact combined silencer SCR unit, no larger in size than a

conventional silencer.

Furthermore, in certain applications the adoption of such measures may have

additional benefits to that of emission reductions. Ship owners may also wish to take

into consideration financial incentives which are available to ships visiting certain

parts of the world, e.g. Sweden and United States, where reductions in port and fare

way fees is offered in return for ships complying with more stringent engine emission
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limits.  For commercial operators, assessing the balance between paying high port

dues and fitting emission controlled engines may be relatively simple, especially

where standard ship operating patterns are maintained.

In most cases, NOx emission reduction will inevitably result in additional costs to

ship owners. As mentioned above, there are several choices which could be selected

to meet the NOx limits. However, it will be left to the ship owners to calculate,

analyze and select their best possible option with regard to initial investment cost,

operation cost, simplicity and maintainability, according to a ship’s particular mode

of operation. Also, it is ultimately the ship owner’s responsibility to ensure that his

vessel complies with the NOx regulation.

As indicated in Chapter 3, the compliance of each diesel engine which is installed in

a ship constructed on or after 1 January 2000  is not unenforceable until such time as

the Annex VI enters into force.  Furthermore, the issuance of IAPP Certificate and

the initial survey of such engines may be delayed by up to 3 years.  However, earlier

compliance with the regulation is recommended to ship owners. It is much easier and

more cost-effective to order equipment to be supplied in accordance with coming

regulations than attempt to upgrade existing equipment to meet standards for which it

was not originally designed.  In addition, if an engine cannot be pre-certified on a

test-bed, the on-board test has to fully meet all the requirements of a test-bed

procedure; this means that, in such cases, the on-board test may cause huge

problematic matters due to practical difficulties to meet the full test bed procedure on

board a ship.

Similarly, although an engine has been certified the Statement of Compliance (SOC)

in accordance with the NOx Technical Code at the time of its manufacture, evidence

of continuing compliance may not be required until such time as the initial survey for

issuance of the IAPP is carried out.  However, in order to avoid the retrospective
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regulatory compliance problems associated with NOx emission, the owner should

ensure that the ship will be maintained in continuing compliance with the relevant

NOx emission limits, with documentary evidence such as “record book of engine

parameters” and “technical documentation of an engine component modification”
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