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Mooring for Wave Energy Converters (WECs)

&+ Reduce cost of mooring Wave early array cost breakdown
(6-30%)

> Related to installation and W structure
Connection W PTO and control

o Project started 2012 :Z::::::::S/mwmgs

¢ Initiated by industry .

(Ocean Energy Centre)

Other capex
® Decomissioning

Opex

> Moorings are costly : OK for oil and gas, (< 2% of
investment)

> Reduce the cost of moorings for WECs (6 — 30 %)
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In-house mooring code MooDy

In development since 2012, now at 3 re-write
High-order finite elements

Discontinous Galerkin method

Explicit time stepping

Coupled to OpenFOAM and recently to WEC-Sim

Force at attachment to the WEC, Cable no. 1
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Fig. 6. The solution state after 50 s of simulation. Note the design failure ) . . .
. . . Fig. 7. Tension force in attachment point to the WEC of mooring cable 1.
due to completely lifted cable in mooring cable 1.
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t=12.74 t=12.87

Snap loads

< "When the touchdown point
speed exceeds the transverse
wave speed of the mooring line = 1300
a shock forms in the tension.
[...] Shocks during upward
motion of the mooring lead to a
snap load in the tension record.
Shocks during downward
motion lead to slack tension at
the touchdown point" = 1328

t=13.14

t=13.41

Gobat and Grosenbaugh, (2001)
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Capture snap loads by
Discontinuous Galerkin (DG)
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Model equation: Nonlinear hyperbolic equation

Formulation in conservative form: Ut + F(U)T — S

%() 1 0 T _0s
ot?2  0s |‘)—"’

0s

|
KH

r : cable position vector

T = EApe : tension force magnitude (tangential to cable, no bending stiffness included)
f : external forces (added mass, buoyancy, ground model and drag)

Yo : cable mass per unit length

s : unstretched cable coordinate
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Modelling of nonlinear hyperbolic equations

& Lax-Wendroff’'s theorem (Lax and Wendroff, 1960)
If a conservation law is solved with a conservative method the solution
converge to a unique and correct solution

U +-FU). =S

> Hue-LeFloch’s theorem (Hue and LeFloch, 1994)

If a non-conservative method is used — well then the solution will simply not
be correct..

&> Godunov’s theorem (Godunov, 1959)

There is no second- or higher order scheme with constant coefficients that
do not produce non-physical maximum/minimum
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Snap loads demands on numerical scheme

& Shock waves -> Be able to handle discontinuities (DG)

> Peak load can be very high and important - Accurate peak captures,
i.e. no over-undershoots (limiter)

<> High celerity > High temporal resolution (regardless explicit or
implicit)

<> Many load cycles - Low numerical damping (high spatial resolution,
high p)

<> (Snap load generation - Accurate ground model)
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Key step 1: Equation in conservation form
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where ¢ = 0r/0s and L = ~y0r /0t is the momentum of the cable
and (3 is a penalty parameter
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Key step 2: Conservative numerical method
Discontinuous Galerkin method

Partition the cable domain €2 of unstretched coordinate s € [0/L.]
in to Ng; elements regions €2.. Inside the elemental region a function

y is approximated with a pth order Legendre polynomial: \\:i |
e-1 - _\. .
, ~~ € _ p ! ~e “ xel ,.\;__,
y(s,t) ~ Y (s,1) = S0 u(8) (1) S
e e =X
where 7 is the kth modal expansion coefficient. o ement

Take the inner product with respect to the basis function and integrate the flux
vector by parts. Exchange the boundary flux with a numerical flux, and even-
tually integrate by parts once more yield:

Jo, 9Usds + [, 6F(U),ds + [oq ¢ (F(U) — F(U)) ndl = [, ¢Sds

P = (7} + P2l
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Key step 3: Monotone solutions

&> Application of slope limiter (Generalized MinMod). Only
works for low-order elements so uses hp-adaptivity for
keeping the accuracy in shock regions

> Use strong stabilisation preserving explicit time-
stepping schemes (SSP-RK3)
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Verification of conservative formulation

& Vibrating string test & Convergence plot

& Linearised tension force & L2 norm
¢ No gravity > Exponential convergence (p+1/2)

Position att =0.00
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e 1D Test case

. e 100 m cable
Shock propagatlon case « 1000 N jump at
midpoint
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Figure 2: Shock appearance during the first second of simulation, sampled every 0.1s from
the N = 320 case. (a) shows ¢ € [0,0.4]s and (b) shows £ € [0.5,1.0]s. The arrows indicate
the propagation direction of the front.
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Shock propagation case — Monotone solution
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Shock propagation case - Adaptivity

Tension att=2.00
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1.9} |
1.8} I type N p DoF 6 relative time
1.7} l ] static 160 1 320 NA 0.174
16} | | static 160 1 320 20 0.254
915 . static 320 1 640 NA 0.675
214l l ] static 320 1 640 20 1.000
13| T | h-adapting 48 1 96 NA 0.192
1.2} | h-adapting 43 1 86 2.0 0.208
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Validation case o) & A A N
eotll (1 | 4 T Y Y { O B
« 33m chain on concrete floor | |
in 3m water. S0 | |
 Fixed anchor and circular < 400 | ! '
motion of fair lead s | I ,
« Radius 0.2m and period time - 30 ' .
1.25s 203 | REEREA
f | ol I o
 Excellent match in force time 10 W :.:. | w’ j 4 w N’f / M
history at fair lead % 10 ' 15
« Some numerical noise in low Time (s)

tension region
* Pronounced extra peak,
indicating snap load
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Influence of High-Order on
Fatigue Estimation
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Fig. 7. Presentation of the results from the fatigue damage calculations for the four types of simulation procedures along the whole mooring line from the fairlead to the
anchor point (line coordinate from 0 to 100 m). Mooring lines 1-4 are represented by a green thin line, a black dash line, a blue dash-dotted line and a red dotted line,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Yang et al., (2016)
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Concluding remarks

 Snap load important for WECs
 MooDy uses a conservative method (DG) for solving the equations
casted in conservation form
» The numerical fluxes are upwinded based on an approximative Riemann
solver
« Limiters avoid over-undershoots
« Ground model important for the generation of snap - needs a closer look
* hp-adaptivity
« MooDy is designed as a high-order code
« Potentially a large speedup of computations without loss of accuracy
« Low numerical diffusion have influence on fatigue estimates
« Slack cables without bending stiffness
* An ill-posed problem
* Inclusion of bending stiffness needed to avoid numerical noise also
important for the generation of snap
 MooDy is intended for use as a mooring module
* Coupled to WEC-SIM for standard irregular waves events
« Coupled to CFD (OpenFOAM) for extreme events
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