Energy Efficient Operations of Warships
Perspective of the Indian Navy

Cdr Amit Batra and Cdr Rohit Prakash

IHQ MoD(Navy), India
Content

- Introduction
- Drivers for Change
- IN’s Green Initiatives Programme
- Current Practices
- Enablers for the Green Initiatives Programme
- Conclusion
Introduction

- Current global scenario
 - Climate change concerns
 - Environment sustainability
- India’s climate change goals
 - Intended Nationally Determined Contribution
 - Core Principle: Sustainable Development
- Implementation requires all-inclusive efforts
Introduction

- Indian Navy: Aligned to the national mission
 - Global maritime force
 - Blue water capabilities
 - 200 ship Fleet by 2027
 - Green Initiatives Program (2014)
 - Energy and resource efficient
 - Environmentally responsible
 - IN Environment Conservation Roadmap
 - Reduce
 - Diversify
 - Clean technologies

Green Footprint to blue water capabilities
Drivers for Change

- **Drivers**
 - Global climate change concerns
 - Alignment with national policy
 - Reduce running costs
 - Enhanced operational reach

- **Emerging challenges**
 - High CAPEX – Planned acquisitions/ship building program
 - Availability of mature technology
 - Cultural issues – traditional warship practices

- **Implementation**
 - Acquisition
 - Fleet procedures
 - Behavioral changes
IN ‘Go Green’ Objectives

- **Fleet**
 - Design
 - Efficient
 - Operations
 - Optimize
 - Maintenance
 - Sustain

- **Shore**

IN Green Initiatives

Directorate of Marine Engineering
Overall IN ‘Go Green’ Philosophy

IN Green Initiatives

Fleet
Design
- Acquisition
- Retrofit

Operations
- Doctrine
- Fleet Plans
- Fleet Operations

Maintenance
- Condition Monitoring
- Corrective Maintenance

Shore
Cultural Shift
O&M: Current Practices

- Operations Monitoring
 - EEF–running hours based (indirect approach)

- Condition Monitoring
 - Fuel consumption trials – comparison to CST figures
 - Engine health monitoring

- Monitoring Mechanism
 - Maintenance of Logs: manual logs, returns, post analysis by INSMA
 - Advantages
 - Simplicity – low crew training
 - Low cost
 - Limitations
 - No hull health monitoring
 - Data collation and analysis: manual
IN ‘Go Green’ Enablers

IN Green Initiatives

Fleet

Design
- Hull
- Propulsion & PG
- Optimization

Operations
- Modelling Scenarios
- Staff Requirements
- Operational Profile

Maintenance
- Monitoring
- Data Sharing
- Decision Making

Technology
- Identification
- Development
- Insertion
Ship, Hull and Propulsor Design

- Increase hull efficiency
 - Bow, Stern End Bulb
 - Stern flap
 - Propeller Boss Cap Fins
 - Against bio-fouling
 - Hull paint schemes
 - Propeller coatings

- Trim Optimization

- Fleet & Ship Operations Management
 - Voyage Planning
 - Weather Routing

- Technology insertion applicability for retrofit
 - Applicable

Images courtesy of NAVSEA, USA
Propulsion and PG Design

- Enhance Overall Plant Efficiency
 - Over complete range of Operating Profile
 - Target
 - Engine Efficiency
 - Plant Efficiency
 - Recuperation
 - Integrated plants
 - All Electric
 - Hybrid

- Technology insertion applicability for retrofit
 - Applicable for Hybrid Plant in limited cases
Design Requirements & Optimization

- Design stage optimization
 - Ship efficiency: inherent design objective
 - High endurance
 - Low running cost

- Choice of propulsion and electric power plants
 - Conventional, Hybrid or All Electric
 - Optimized Staff Requirements
 - Conditioned for modern role
 - Consider top speed requirement carefully
 - Realistic operational profile
 - Through Life Cost: Acquisition vs Running Cost
Design Optimization

- Multipoint Design Point vs Single Design Point Optimization
 - Design variables: independent cycle parameters
 - Multiple combinations of design variables gives: CDS
 - Comprises of numerous candidate cycles
 - Constraints
 - Technology limits
 - Performance limits

- MDP allows many design points to be included in the analysis
 - Ensures that all performance requirements met at all design points
Monitoring Operations

- Energy Efficient Operations
 - Baselining of Energy Requirements
 - Capture data–class of ship wise
 - Analyze and establish ‘Baseline Levels’
 - Existing ships
 - Future acquisitions
 - Monitor Energy Consumption
 - Intelligent dashboard: Real time monitoring and management tool
 - Ship Level
 - Fleet Level
Monitoring Indices

Energy Efficiency Design Index

\[
\text{EEDI} = \frac{\text{FOC} \times C}{\text{Capacity} \times V_s}
\]

(g/ton-mile)

Energy Efficiency Operational Indicator

\[
\text{EEOI} = \frac{\text{Fuel (ave.)} \times C}{\text{Cargo} \times \text{Distance}}
\]

(g/ton-mile)
Conclusion

- IN developing a strong ‘Green Program’ for its fleets

- Many indirect benefits of the program
 - Lower running costs
 - Higher endurance
 - Better engine and plant health

- Synergy: need of the hour
 - IN: Open to partnerships in developing
 - Design optimization tools
 - Ship and Fleet Energy Dashboards
 - Trim optimization tool
 - Hull fouling measurement system
Questions
Thank You